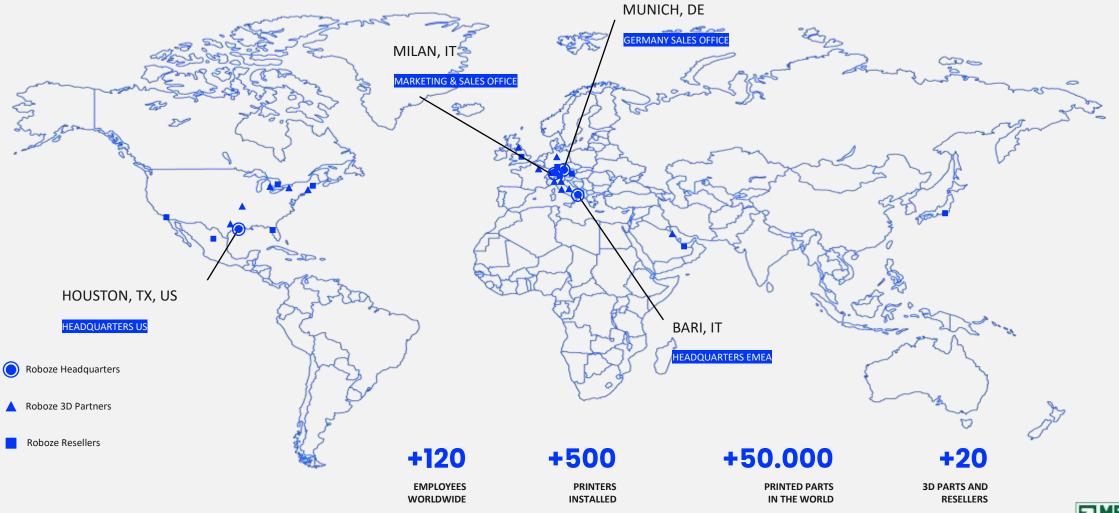
Roboze

Roboze verso un'economia circolare

Sviluppo di materiali riciclati e bio-based in Additive Manufacturing

Alessandra D'Anna, PhD - Roboze R&D Scientist and Compound Expert

Summary


- Company overview and vision
- Sustainability: the impact of Roboze 3d Printing materials
- Bioplastics and market data
- **Roboze Bio-based PA**: characteristics and performances
- **Roboze recycled high-performance materials**: pilot plant and aim of the project
- Conclusions and future developments

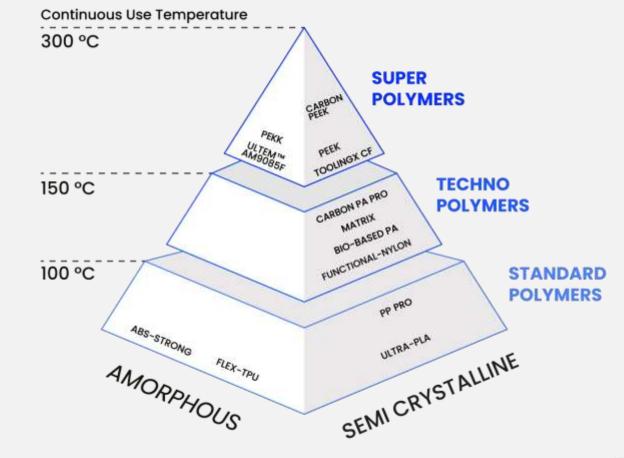
Accelerating the world's transition to sustainable manufacturing

Company overview

From Delocalized Mass Production

To Roboze Distributed Customized Production

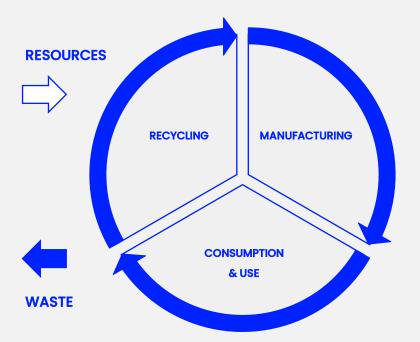
PRODUCTION RE-SHORING PLATFORM

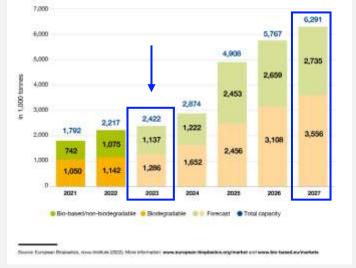


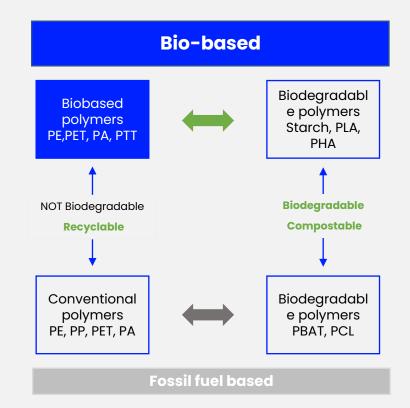
Roboze Technological Ecosystem

Sustainability: the impact of Roboze 3D Printing materials

- Amorphous and semi-crystalline polymers
- Material composites to increase mechanical properties
- Technopolymers for metal replacement
- Design optimization and weight reduction
- High continuous use temperature




Global production capacities of bioplastics



Bioplastics and market data

Global production capacities of bioplastics

- Circular –economic model
- European Parliment → zero carbon and fully circular economy by 2050

Roboze

Roboze Bio-based PA

characteristics and performances

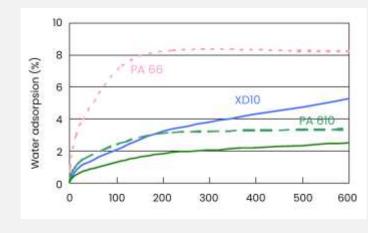
Alessandra D'Anna, PhD - Roboze R&D Scientist and Compound Expert

Main features

Reduced environmental impact

 Recyclable and bio-based PA- matrix: produced by 60% from renewable resource

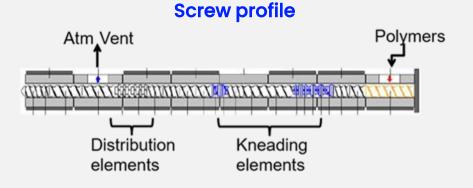
őJn


Xylylenesebacamide (XD10)

Natural cropped fibers of dimension 200 μm

• Lower water absorption than PA66

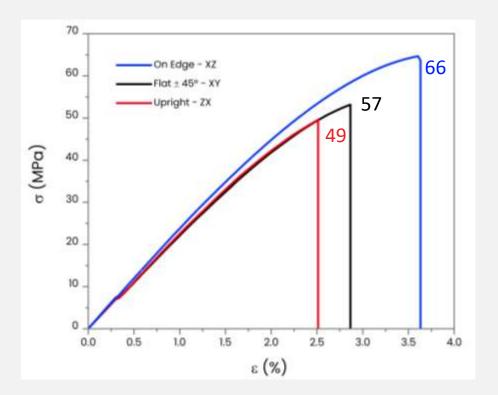
Extrusion process



Twin –screw extrusion process

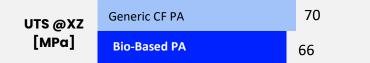
- Co-rotating twin screw extruder 16mm L/D40 Polylab HAAKE
- T profile from 220°C to 230°C
- Torque 80-90 Nm
- Pressure 3.127 MPa

- Roboze Plus PRO
- $T_{printing} = 225^{\circ}C$ and $T_{buildplate} = 80^{\circ}C$ on *buildsheet*
- Printing speed = 1800 mm/min
- Nozzle diameter = 0.6 mm (dogbones samples) and 0.4 mm


#PrintStrongLikeMetal

Mechanical performances

- ASTM D638 samples (all orientations)
- Young's modulus in XZ ad XY (≈2.6 ±0.1 GPa)
- Young's modulus in ZX orientation (2.2 GPa)
- Negligible warpage after print



Comparison with other materials

Near-isotropic mechanical properties

Higher layer bonding leads to a less orthotropic mechanical behavior compared to petroleum based generic carbon fiber reinforced nylon

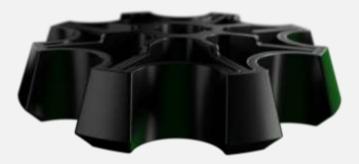
Sustainable tooling

Wide chemical compatibility, on part than standard PA, towards oils, greases and refrigerant fluids to manufacture high performance tooling

Reduced greenhouse gas emissions

Lower emissions to produce 1kg compared to petroleum-based plastic

Applications


- Complex geometries
- Isotropic mechanical properties
- Lower water absorptions increased the application fields
- Star wheel conveyors and grippers applications

Gripping fingers in Bio-based PA

Advantages

- Wide chemical compatibility and self-lubricating
- Preservation of the mechanical properties of the parts even in case of spillage
- 60% lower carbon footprint
- Weight reduction of more than >80% possible: lighter objects reduce inertial masses

Star wheel for automated industrial lines in Bio-based PA

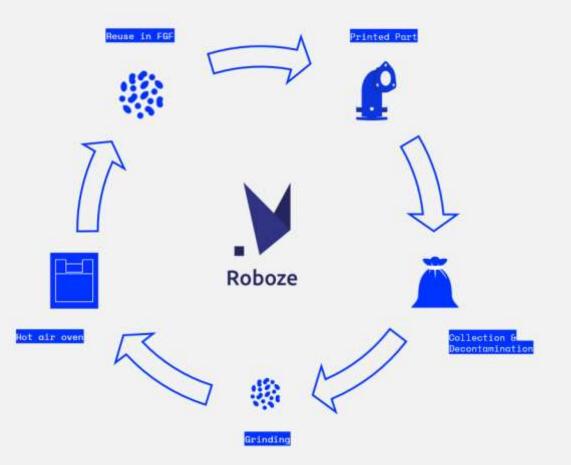
Roboze

Roboze recycled highperformance materials

pilot plant and aim of the project

Alessandra D'Anna, PhD - Roboze R&D Scientist and Compound Expert

Roboze recycled high-performance materials: process and aim of the project


Mechanical recycling process

- Circular economy plan
- Mechanical recycling of high performances polymers
- Use of flakes in FGF technology and Roboze ARGO 1000 HYPERMELT

Granulation pilot plant

Recycling process

#PrintStrongLikeMetal

Roboze recycled high-performance materials: process and aim of the project

Roboze extruder for FGF technology

Fused Granular Fabrication technology

- Up to 10x print speed
- Up to 3x cost saving
- Higher filler content, for higher in-plane mechanical performances
- Uniform melt temperature distribution, for higher out-of-plane
 mechanical performances

When compared to equivalent FFF process.

Roboze BNT extruder

- Extrusion rate up to 2 Kg/h
- Maximum operating temperature 450°C, 3 separated heating zones
- Nozzle sizes range 0.8mm-3 mm

FGF Roboze extruder

Printing and mechanical properties results of r-materials

- Validation of r-materials: r-PEEK, r-ULTEM[™] 9085, r-Carbon PA, r-Carbon PEEK
- Mechanical properties : Young's modulus, Tensile Strength, Elongation at maximun load ASTM D638

Materials	Young's modulus [GPa]	Tensile Strength [MPa]	Elongation at maximum load [%]
r-PEEK	~	*	+ 11
r-ULTEM [™] 9085	~	*	+ 13

≈ : as compared to the virgin polymers All the mechanical tests are in process of validation

r-PEEK flakes

Roboze Bio-based PA

- First bio-based PA reinforced with natural fibers with comparable mechanical properties of fossil-fuel based PA
- Quasi isotropic bheaviour
- Good processability during compounding and printing processes
- Wide application fields

Roboze recycled high-performance materials

- Circular economy plan
- Evaluation of LCA of the process and the materials (*in progress*)
- Evaluation of the carbon footprint of the recycled materials (in progress)

Roboze

Via Vincenzo Aulisio 31/33 70124 Bari-Italy roboze.com

<u>(+39) 080 505 7559</u>

HOUSTON, TX, US HEADQUARTERS US

Roboze Inc

7934 Breen Drive 77064 Houston, TX, Stati Uniti

<u>(+1) 346 229 5675</u>

