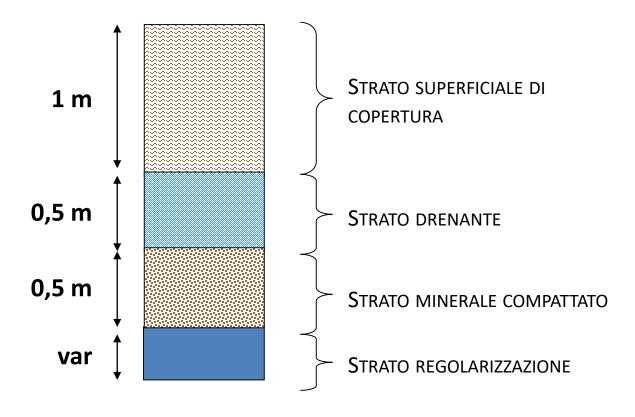
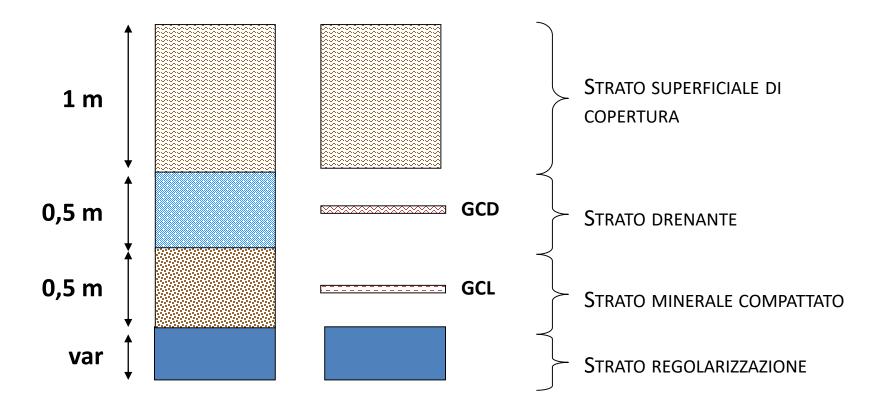
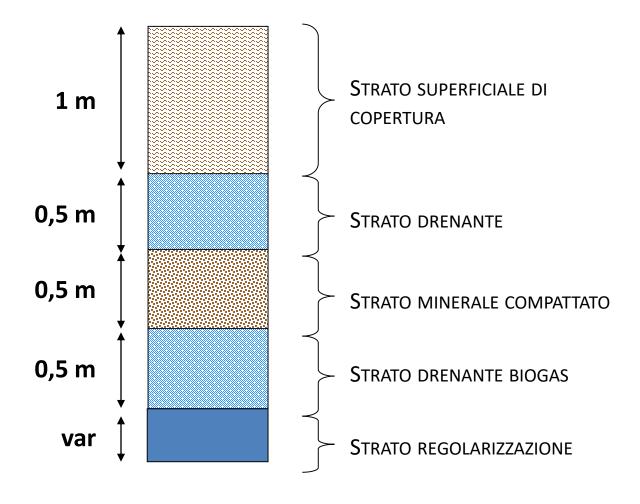

ALLEGATO 1: LA STRATIGRAFIA DEL SISTEMA DI CHIUSURA DOVRÀ OTTEMPERARE ALLE SEGUENTI FUNZIONI:

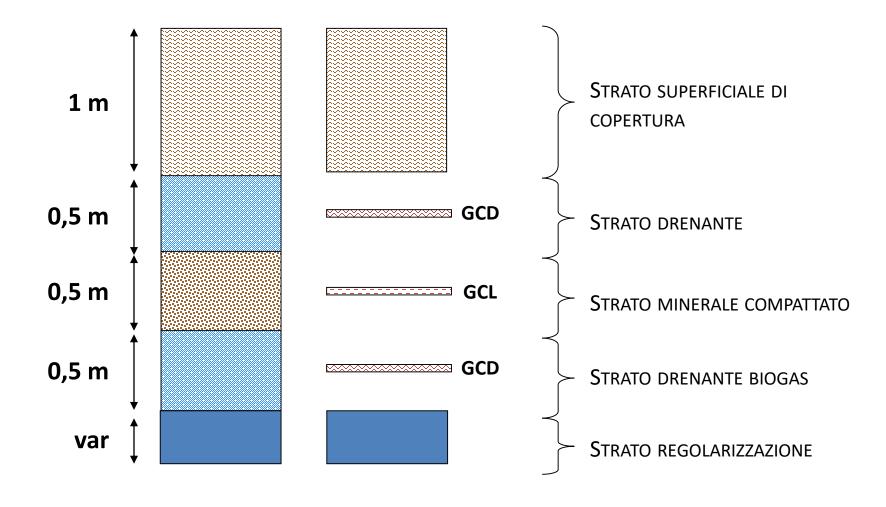
- ISOLARE IL CORPO RIFIUTI DALL'AMBIENTE ESTERNO;
- MINIMIZZARE LA QUOTA DELLE INFILTRAZIONI D'ACQUA ALL'INTERNO DEL CORPO RIFIUTO;
- RIDURRE AL MINIMO L'ATTIVITÀ ANTROPICA PER INTERVENTI DI MANUTENZIONE;
- MINIMIZZARE L'INNESCARSI DI FENOMENI EROSIVI;
- GARANTIRE SUFFICIENTE RESISTENZA AGLI ASSESTAMENTI PROVOCATI DAI FENOMENI DI SUBSIDENZA LOCALIZZATA A SEGUITO DELLA DEGRADAZIONE DEL RIFIUTO;


AI PUNTI 1.2.3 E 2.4.3. DELL'ALL.1, VENGONO DETTAGLIATI I REQUISITI MINIMI CHE IL SISTEMA DEVE DISPORRE A SECONDA SE SI TRATTI DI UNA DISCARICA PER INERTI O PER RIFIUTI PERICOLOSI/NON PERICOLOSI


D. LGS 36/2003 – LE INDICAZIONI SUL SISTEMA DI COPERTURA

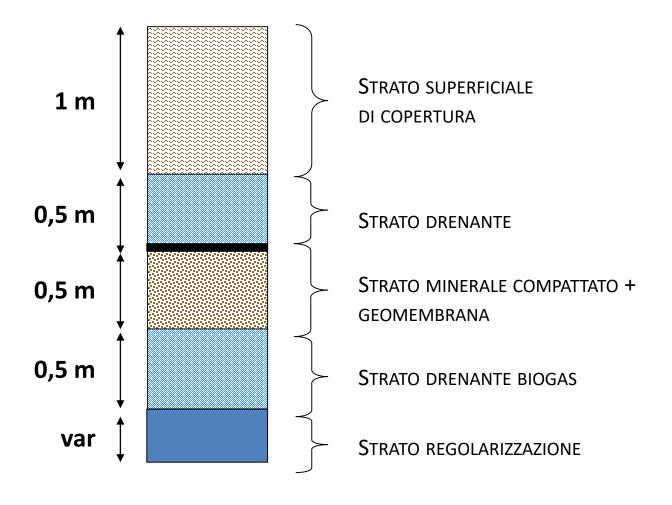
D. LGS 36/2003 - DISCARICHE IN BASE AL TIPO DI RIFIUTI

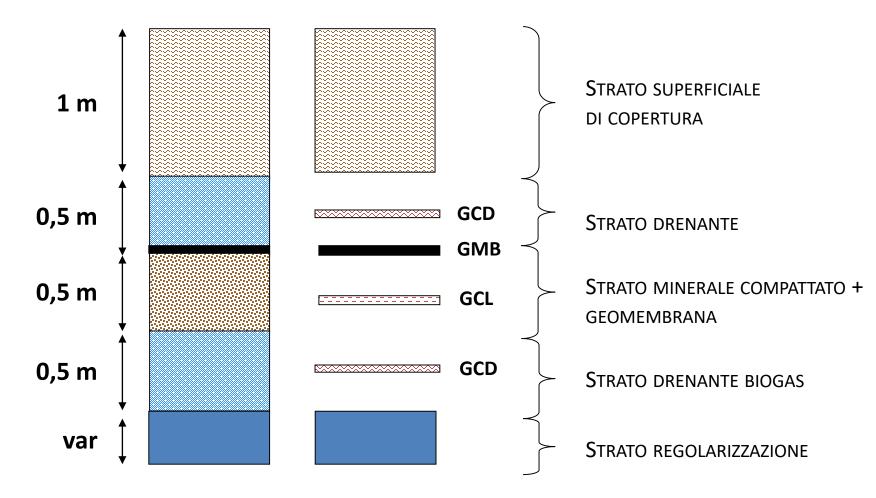



GCD: GEOCOMPOSITO DRENANTE

GCL: GEOCOMPOSITO BENTONITICO

COPERTURA PER RIFIUTI INERTI CON GEOSINTETICI


D. LGS 36/2003 — COPERTURA PER RIFIUTI NON PERICOLOSI


GCD: GEOCOMPOSITO DRENANTE

GCL: GEOCOMPOSITO BENTONITICO

COPERTURA PER RIFIUTI NON PERICOLOSI CON GEOSINTETICI

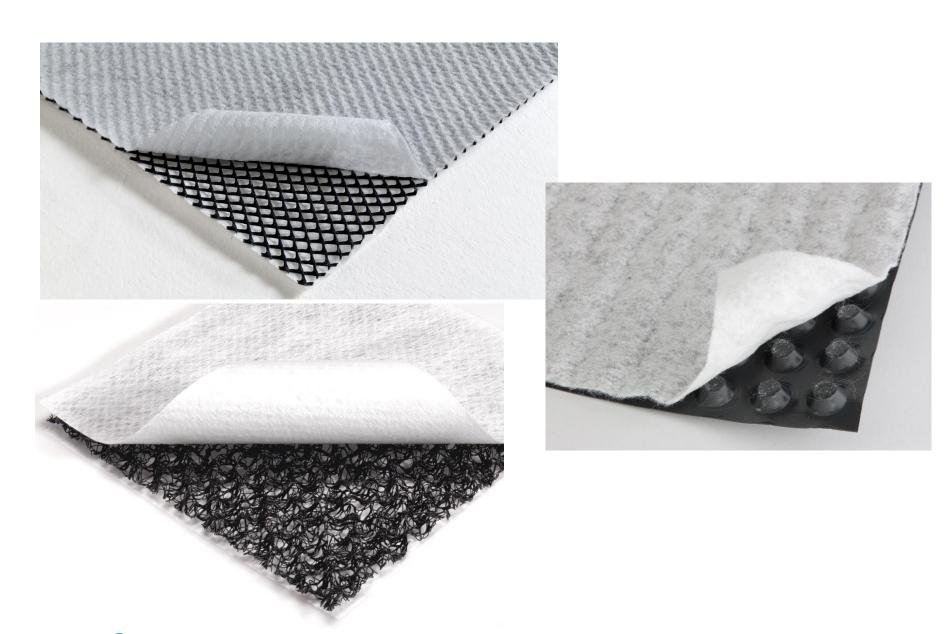
D. LGS 36/2003 — COPERTURA PER RIFIUTI PERICOLOSI

GCD: GEOCOMPOSITO DRENANTE

GMB: GEOMEMBRANA SINTETICA IN HDPE

GCL: GEOCOMPOSITO BENTONITICO

COPERTURA PER RIFIUTI PERICOLOSI CON GEOSINTETICI


- Soluzione tecnica che risolve molto meglio la questione relativa alla stabilità delle sponde (mezzo metro di argilla su una sponda a 25°?)
- Risparmio notevole negli spessori degli strati che si traduce in un maggiore volume di stoccaggio
- Migliore logistica di cantiere e migliore impatto ambientale per via della riduzione drastica del numero di camion per il trasporto materiali
- AMPIA GAMMA DI MATERIALI GEOSINTETICI TRA CUI SCEGLIERE, AL FINE DI POTER OTTIMIZZARE COSTI E PRESTAZIONI

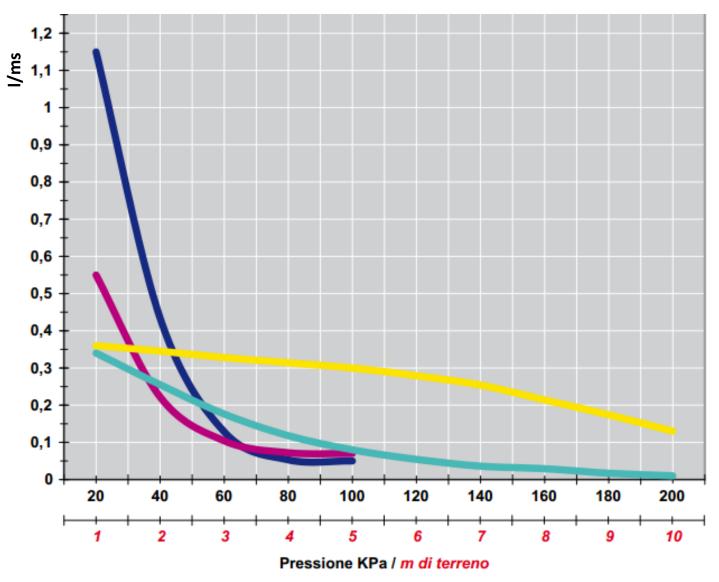
- Soluzione tecnica che risolve molto meglio la questione relativa alla stabilità delle sponde (mezzo metro di argilla su una sponda a 25°?)
- RISPARMIO NOTEVOLE NEGLI SPESSORI DEGLI STRATI CHE SI TRADUCE IN UN MAGGIORE VOLUME DI STOCCAGGIO
- Migliore logistica di cantiere e migliore impatto ambientale per via Della riduzione drastica del numero di camion per il trasporto Materiali
- AMPIA GAMMA DI MATERIALI GEOSINTETICI TRA CUI SCEGLIERE, AL FINE DI
 POTER OTTIMIZZARE COSTI E PRESTAZIONI

- Soluzione tecnica che risolve molto meglio la questione relativa alla stabilità delle sponde (mezzo metro di argilla su una sponda a 25°?)
- RISPARMIO NOTEVOLE NEGLI SPESSORI DEGLI STRATI CHE SI TRADUCE IN UN MAGGIORE VOLUME DI STOCCAGGIO
- MIGLIORE LOGISTICA DI CANTIERE E MIGLIORE IMPATTO AMBIENTALE PER VIA
 DELLA RIDUZIONE DRASTICA DEL NUMERO DI CAMION PER IL TRASPORTO
 MATERIALI
- AMPIA GAMMA DI MATERIALI GEOSINTETICI TRA CUI SCEGLIERE, AL FINE DI POTER OTTIMIZZARE COSTI E PRESTAZIONI

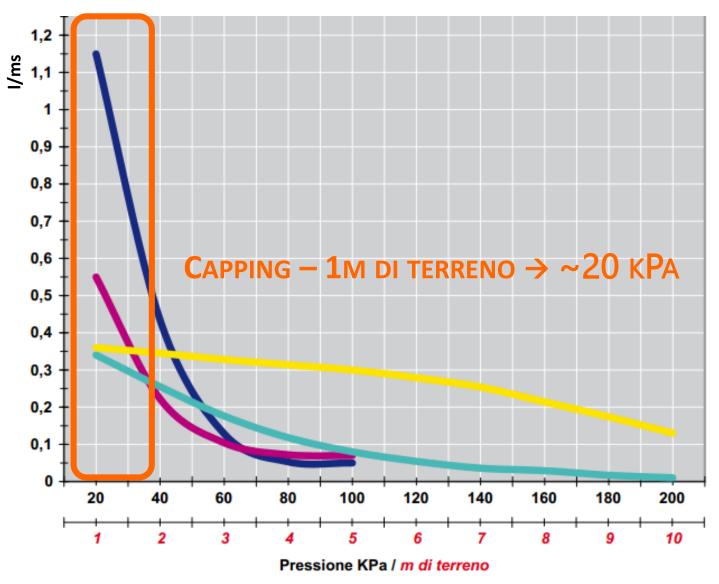
- Soluzione tecnica che risolve molto meglio la questione relativa alla stabilità delle sponde (mezzo metro di argilla su una sponda a 25°?)
- Risparmio notevole negli spessori degli strati che si traduce in un maggiore volume di stoccaggio
- Migliore logistica di cantiere e migliore impatto ambientale per via della riduzione drastica del numero di camion per il trasporto materiali
- AMPIA GAMMA DI MATERIALI GEOSINTETICI TRA CUI SCEGLIERE, AL FINE DI
 POTER OTTIMIZZARE COSTI E PRESTAZIONI

- SOLUZIONE TECNICA CHE RISOLVE MOLTO MEGLIO LA QUESTIONE RELATIVA ALLA STABILITÀ DELLE SPONDE (MEZZO METRO DI ARGILLA SU UNA SPONDA A 25°?)
- Risparmio notevole negli spessori degli strati che si traduce in un maggiore volume di stoccaggio
- Migliore logistica di cantiere e migliore impatto ambientale per via della riduzione drastica del numero di camion per il trasporto materiali
- AMPIA GAMMA DI MATERIALI GEOSINTETICI TRA CUI SCEGLIERE, AL FINE DI
 POTER OTTIMIZZARE COSTI E PRESTAZIONI

COPERTURA CON GEOSINTETICI - I GEOCOMPOSITI DRENANTI


1. QUANTA ACQUA DEVO DRENARE?

$$Q_{progetto} = q_{progetto} * L = q_{pioggia} * \cos(\alpha) * \lambda * L$$
 [m3/s m]


GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO

2. QUALE CARICO AGISCE SUL GEODRENO?

GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO

2. QUALE CARICO AGISCE SUL GEODRENO?

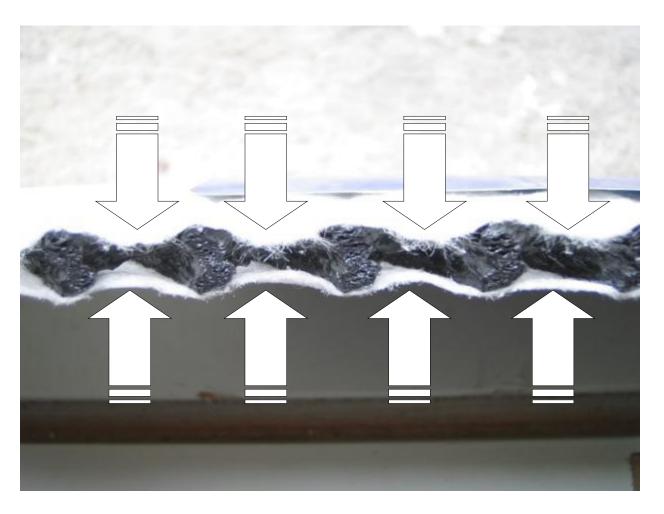
GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO

3. Ho condizioni chimiche particolari?

	POLIETILENE AD ALTA	POLIPROPILENE	POLIESTERE	POLIAMMIDE	
	(HDPE)	(PP)	(PET)	(PA)	
Densita' (Kg/mc)	950	910	1380	1140	
Tasso di ripresa d'umidita' (%)	< 0,05	< 0,05	0,4	6,5	
Temperatura di fusione (°C)	125	165	250	250	
Temperatura di rammollimento (°C)	110	140	220 – 240	230	
Tenacita' (N/Tex)	0,4 - 0,6	0,4 - 0,65	0,4 - 0,8	0,4 - 0,8	
Allungamento					

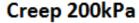
	Allungamento						
Resistenza a		AK			N		
- Acidi - Basi		7-34-45-4	ellente ellente	Eccellente Eccellente	Bud Suffic		Sufficiente Buona
	- Basi - Solver clorura aroma	ati ed	Eccellente Sufficiente	Eccellente Sufficiente	Sufficiente Buona	Buona Buona	
	- Agenti		Scarsa	Buona	Buona	Sufficiente	
	- Raggi - Fungh	UV	Scarsa Eccellente	Scarsa Buona	Sufficiente Sufficiente	Sufficiente Buona	
	- Insetti - Vermi		Eccellente Eccellente	Sufficiente Sufficiente	Sufficiente Sufficiente	Sufficiente Sufficiente	
	secco	damento	Sufficiente	Sufficiente	Buona	Sufficiente	
	- Riscal umido	damento	Sufficiente	Sufficiente	Sufficiente	Buona	
	- Abrasi	one	Buona	Buona	Eccellente	Eccellente	

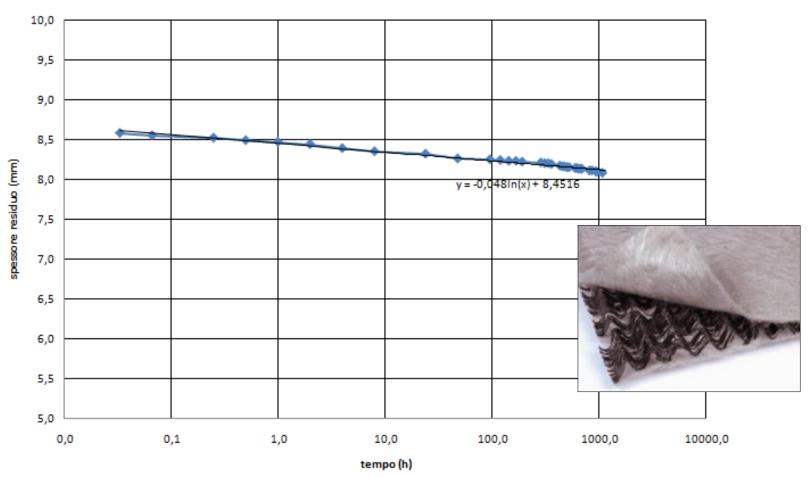
GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO


$$q_{amm} = q_{nom} \left[\frac{1}{FS_1 * FS_2 * FS_3 * FS_4} \right]$$

Dove:

- q nom = portata specifica nominale del GCD calcolata secondo EN ISO 12958 (I/sm);
- q amm = portata specifica ammissibile del GCD;
- FS1 = fattore di danneggiamento che tiene in considerazione il fenomeno dell'intrusione del geotessile all'interno dell'anima drenante;
- FS2 = fattore di danneggiamento che tiene in considerazione il fenomeno del creep dei materiali polimerici;
- FS3 = fattore di danneggiamento che tiene in considerazione il fenomeno del "clogging" di natura chimica;
- FS4 = fattore di danneggiamento che tiene in considerazione il fenomeno del "clogging" di natura biologica;


GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO


FS1 = FATTORE DI DANNEGGIAMENTO CHE TIENE IN CONSIDERAZIONE IL FENOMENO DELL'INTRUSIONE DEL GEOTESSILE ALL'INTERNO DELL'ANIMA DRENANTE

GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO

FS2 = FATTORE DI DANNEGGIAMENTO CHE TIENE IN CONSIDERAZIONE IL FENOMENO DEL CREEP DEI MATERIALI POLIMERICI

GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO

Capacità drenante nel piano MD (*)	EN ISO 12958 ASTM D4716	I/(m·s)		+/-20%
Gradiente idraulico	Contatto	i = 0.04	i = 0,10	i = 1
Carico 20 kPa	M/R	0,70	1,10	3,30
" 50 kPa	M/R	0,13	0,22	0,82
" 100 kPa	M/R	0,03	0,07	0,27

CARATTERISTICHE IDRAULICHE AMMISSIBILI NEL TEMPO

toll

Capacità drenante nel piano MD (*) - carico 20 kPa / i = 0,04

+/-20%

Vita utile di progetto (tempo = anni)	RF _{cr}	RF cc	RF _{bc}	RF _{tot}	Capacità drenante ammississibile		
					m²/s	l/sm	
1	1,86	1	1,2	2,232	3,40E-04	0,34	
10	2,33	1	1,2	2,796	2,70E-04	0,27	
20	2,52	1	1,2	3,024	2,50E-04	0,25	
30	2,62	1	1,2	3,144	2,40E-04	0,24	
40	2,68	1	1,2	3,216	2,30E-04	0,23	
50	2,73	1	1,2	3,276	2,30E-04	0,23	

M/M: Contatto Morbido/Morbido - M/R: Contatto Morbido/Rigido - R/R: Contatto Rigido/Rigido

(*): MD: DIREZIONE LONGITUDINALE

GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

DECRETO 17 gennaio 2018.

Aggiornamento delle «Norme tecniche per le costruzioni».

6.11.1.4 VERIFICHE DI SICUREZZA

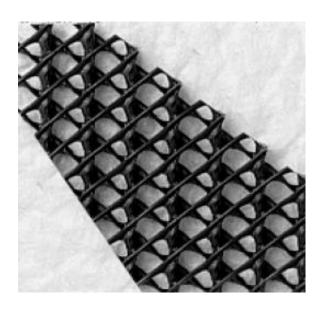
La stabilità del manufatto e dei terreni di fondazione deve essere valutata mediante specifiche analisi geotecniche, riferite alle diverse fasi della vita dell'opera. In particolare deve essere verificata la stabilità e la deformabilità del fondo, per garantire nel tempo l'efficacia e la funzionalità del sistema di raccolta del percolato, la stabilità globale e la stabilità delle pareti laterali.

In particolare, nel caso di barriere composite, devono essere valutate le condizioni di stabilità lungo superfici di scorrimento che comprendano anche le interfacce tra i diversi materiali utilizzati.

GEOSYNTHETIC - SOIL INTERFACE

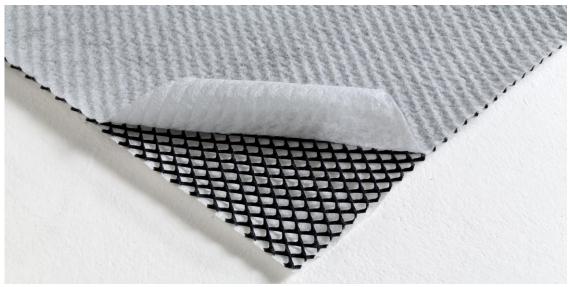
Geomembrane (HDPE) - Sand	$\phi = 15^{\circ} \text{ to } 28^{\circ}$
Geomembrane (HDPE) - Clay	$\phi = 5^{\circ}$ to 29°
Geotextile – Sand	φ = 22° to 44°
Geosynthetic clay liner - Sand	$\phi = 20^{\circ}$ to 25°
Geosynthetic clay liner - Clay	$\phi = 14^{\circ} \text{ to } 16^{\circ}$
Textured HDPE - Compacted clay	$\phi = 7^{\circ} \text{ to } 35^{\circ}$ $e' = 20 \text{ to } 30 \text{ kPa}$
Textured HDPE - Pea gravel	$\phi = 20^{\circ} \text{ to } 25^{\circ}$
Textured HDPE - Sand	φ = 30° to 45°
Geotextile – Clay	φ = 15° to 33°

GEOSYNTHETIC - GEOSYNTHETIC INTERFACE


Geonet – Geomembrane (HDPE)	$\phi = 6^{\circ} \text{ to } 10^{\circ}$
Geomembrane (HDPE) – Geotextile	φ = 8° to 18°
Geotextile - Geonet	$\phi = 10^{\circ} \text{ to } 27^{\circ}$
Geosynthetic clay liner - Textured HDPE	$\phi = 15^{\circ} \text{ to } 25^{\circ}$
Geosynthetic clay liner - Geomembrane (HDPE)	$\phi = 8^{\circ}$ to 16°
Geosynthetic clay liner - Geosynthetic clay liner	$\phi = 8^{\circ} \text{ to } 25^{\circ}$ $c' = 8 \text{ to } 30 \text{ kPa}$
Textured HDPE – Geonet	$\phi = 10^{\circ} \text{ to } 25^{\circ}$
Textured HDPE – Geotextile	$\phi = 14^{\circ} \text{ to } 52^{\circ}$

GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO

GEOSYNTHETIC - SOIL INTERFACE


Geomembrane (HDPE) - Sand Geomembrane (HDPE) - Clay Geotextile - Sand Geosynthetic clay liner - Sand Geosynthetic clay liner - Clay Textured HDPE - Compact Textured HDPE - Pea of Geotextile - Clay Geotextile - Clay Geomembrane (HDPE) - Sand Geosynthetic clay liner - Clay Textured HDPE - Pea of Geotextile - Clay Geomembrane (HDPE) - Sand Geosynthetic clay liner - Clay Textured HDPE - Pea of Geotextile - Clay Geomembrane (HDPE) - Clay Textured HDPE - Pea of Geomembrane (HDPE) - Clay Geomembrane (HDPE) - Clay Textured HDPE - Pea of Geomembrane (HDPE) - Clay Geomembrane (HDPE) - Clay Textured HDPE - Pea of Geomembrane (HDPE) - Clay Geomembrane (HDPE) - Clay Textured HDPE - Pea of Geomembrane (HDPE) - Clay Geomembrane (HDPE) - Clay Geomembrane (HDPE) - Clay Geomembrane (HDPE) - Clay Textured HDPE - Pea of Geomembrane (HDPE) - Clay G	$\phi = 15^{\circ} \text{ to } 28^{\circ}$ $\phi = 5^{\circ} \text{ to } 29^{\circ}$ $\phi = 22^{\circ} \text{ to } 44^{\circ}$ $\phi = 20^{\circ} \text{ to } 25^{\circ}$ $\phi = 14^{\circ} \text{ to } 16^{\circ}$ $\phi = 7^{\circ} \text{ to } 35^{\circ}$ $e^{\circ} = 20 \text{ to } 30 \text{ kPa}$ $\phi = 20^{\circ} \text{ to } 25^{\circ}$ $\phi = 30^{\circ} \text{ to } 45^{\circ}$ $\phi = 15^{\circ} \text{ to } 33^{\circ}$ REACE $\phi = 6^{\circ} \text{ to } 10^{\circ}$ $\phi = 8^{\circ} \text{ to } 18^{\circ}$ $\phi = 10^{\circ} \text{ to } 27^{\circ}$
Geosynthetic Geosynthetic clay liner - Geomembrane (HDPE)	$\phi = 15^{\circ} \text{ to } 25^{\circ}$ $\phi = 8^{\circ} \text{ to } 16^{\circ}$
Geosynthetic clay liner - Geosynthetic clay liner	φ = 8° to 25° c' = 8 to 30 kPa
Textured HDPE - Georet Textured HDPE - Geotextile	$\phi = 10^{\circ} \text{ to } 25^{\circ}$ $\phi = 14^{\circ} \text{ to } 52^{\circ}$

GEOCOMPOSITI DRENANTI - I CRITERI DI PROGETTO

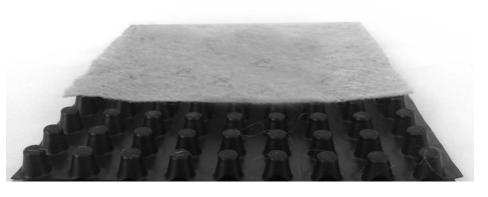
CON GEORETI

NUCLEO IN HDPE, MA TESSUTI IN PP

GEOCOMPOSITI DRENANTI - TIPOLOGIE

CON MONOFILI

SPESSORI DA 20 - 15 - 10 - 8 - 5 - 3 MM


DIVERSE CAPACITÀ DRENANTI E DIVERSO COMPORTAMENTO SOTTO CARICO

GEOCOMPOSITI DRENANTI - TIPOLOGIE

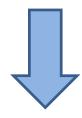
CON MEMBRANE BUGNATE

SPESSORI DA **20 - 10 - 8** MM



DIVERSE CAPACITÀ DRENANTI E
DIVERSO COMPORTAMENTO SOTTO CARICO +

PROTEZIONE MECCANICA DELLA IMPERMEABILIZZAZIONE


GEOCOMPOSITI DRENANTI - TIPOLOGIE

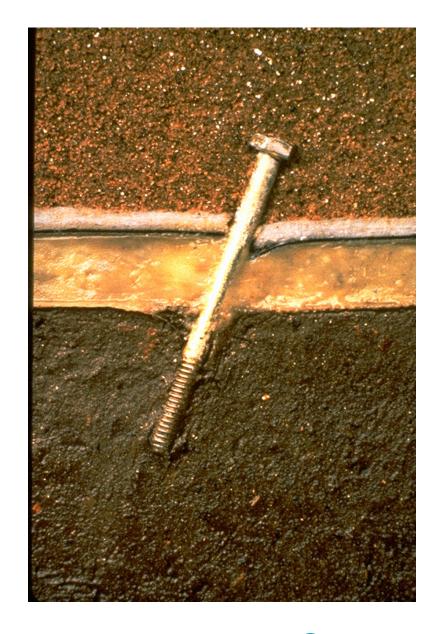
"MICROBUGNATO"

SPESSORE 5 MM

OTTIMO COMPORTAMENTO SOTTO CARICO (> 600 KPA) + PROTEZIONE MECCANICA DELLA IMPERMEABILIZZAZIONE

GEOCOMPOSITI DRENANTI - TIPOLOGIE

GEOTESSILE + TESSUTO NON TESSUTO
CON INTERPOSTA BENTONITE SODICA
(MONTMORILLONITE)


CONDUTTIVITÀ IDRAULICA <1x10⁻¹¹ M/s

GEOCOMPOSITI BENTONITICI

LA MONTMORILLONITE A CONTATTO CON
ACQUA SI ESPANDE FINO A 16 VOLTE IL
PROPRIO VOLUME INIZIALE

GEOCOMPOSITI BENTONITICI

UN GEOCOMPOSITO BENTONITICO E'
"AUTORIPARANTE"

GEOCOMPOSITI BENTONITICI

UN GEOCOMPOSITO BENTONITICO NON

PROTETTO E LASCIATO SOTTO IL SOLE, PERDERA'

PARTE DEL CONTENUTO DI ACQUA

GEOCOMPOSITI BENTONITICI - STOCCAGGIO

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

DECRETO 17 gennaio 2018.

Aggiornamento delle «Norme tecniche per le costruzioni».

6.11.1.4 VERIFICHE DI SICUREZZA

La stabilità del manufatto e dei terreni di fondazione deve essere valutata mediante specifiche analisi geotecniche, riferite alle diverse fasi della vita dell'opera. In particolare deve essere verificata la stabilità e la deformabilità del fondo, per garantire nel tempo l'efficacia e la funzionalità del sistema di raccolta del percolato, la stabilità globale e la stabilità delle pareti laterali.

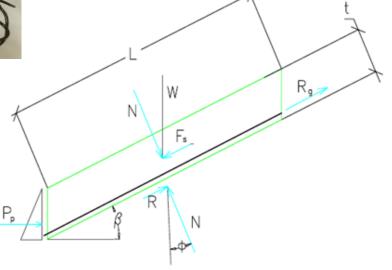
In particolare, nel caso di barriere composite, devono essere valutate le condizioni di stabilità lungo superfici di scorrimento che comprendano anche le interfacce tra i diversi materiali utilizzati.

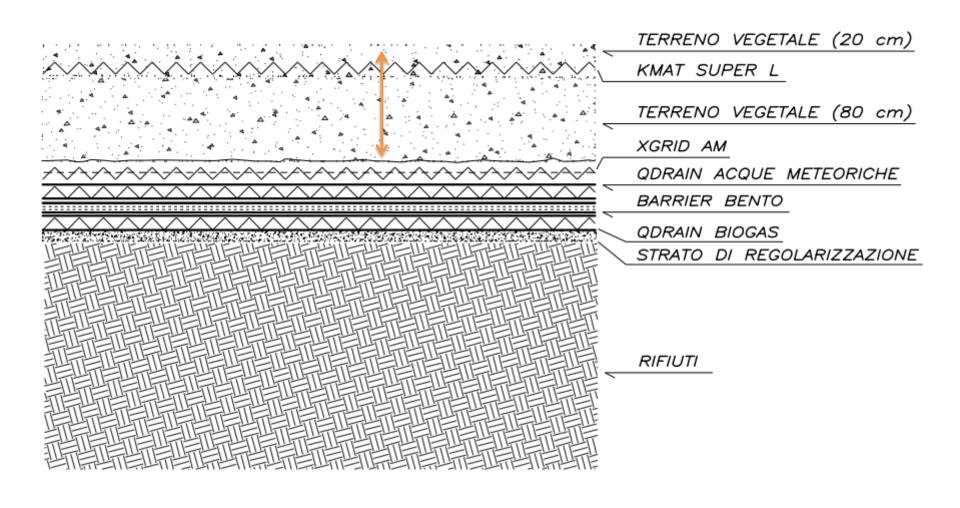
LE SPONDE - I CRITERI DI PROGETTO

La resistenza **T** considerata nel modello di calcolo è la **resistenza ammissibile** calcolata a partire dalla **nominale**, applicando degli opportuni fattori di sicurezza.

$$T_{\text{allow}} = T_{\text{ult}} \left(\frac{1}{F.C._{\text{inst}} \times F.C._{\text{creep}} \times F.C._{\text{ch/bio}}} \right)$$

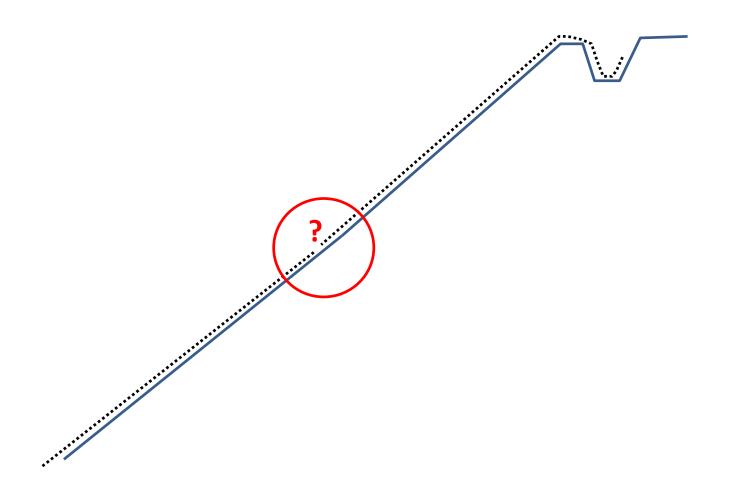
LE SPONDE - I CRITERI DI PROGETTO

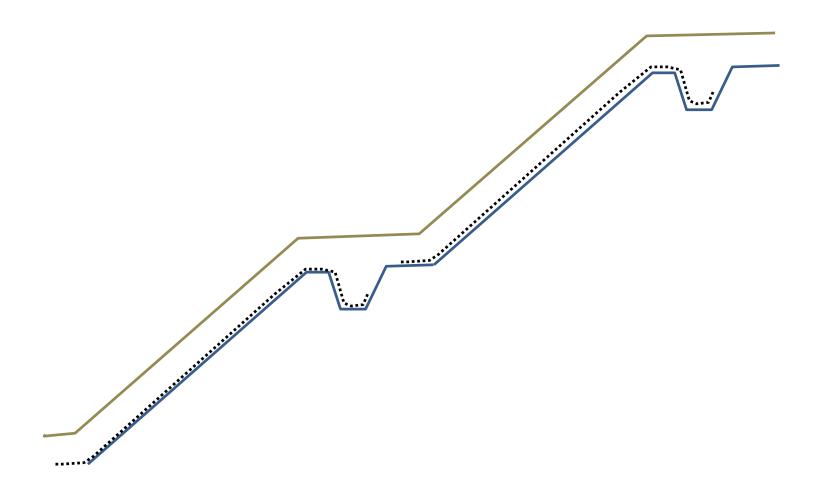



LE SPONDE - I CRITERI DI PROGETTO

SPESSORI 10 - 20 MM, RESISTENZE

DA 35 A 300 KN/M (E OLTRE)





VALUTARE LA LUNGHEZZA DELLE SPONDE PER LA RESISTENZA DEI MATERIALI,

PER IL LORO ANCORAGGIO, MA, SOPRATTUTTO, PER LA LUNGHEZZA DEI

ROTOLI (~ 20M)→ LE GIUNTE CHE RESISTENZA OFFRONO?

Domande?