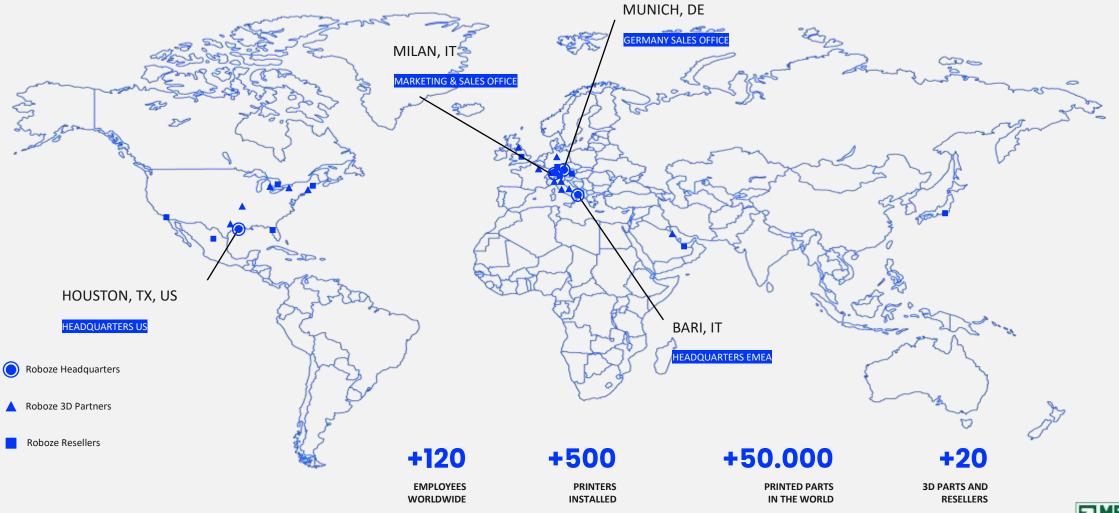
Roboze

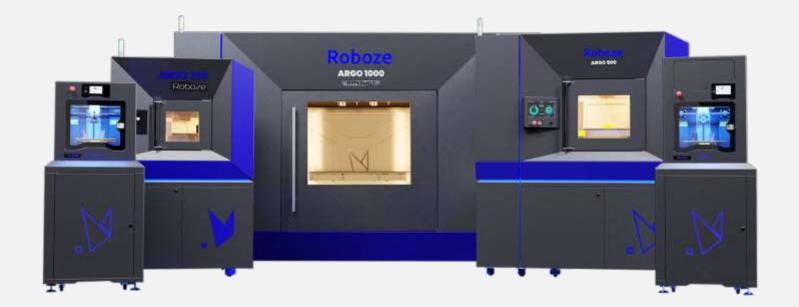
Innovazione nel Settore Aerospaziale per un Futuro Interplanetario

Matteo Regé - Roboze R&D Technology Manager



Accelerating the world's transition to sustainable manufacturing

Company overview



Industrial 3D Printing solutions

Roboze Technological Ecosystem

Repeatable and scalable process

Get the utmost level of repeatability during manufacturing process. Fast, reliable, fully automated and engineered for production.

High performance super-polymers

Improve parts performances while reducing production times and costs through the use of high-performance materials for metal replacement.

Speed up innovation

Print and test components reducing validation times, accelerating product development.

Super polymers and composites

Roboze Materials

Bio-based PA PA + Natural fibers

Excellent dimensional stability Low hygroscopicity Almost isotropic behaviour Carbon PA PRO PA + Carbon Fibers

High tensile strength High tensile modulus Good thermal resistance

ToolingX CF PPS + Carbon Fibers High stiffness Chemical resistance Low surface resistivity

ULTEMTMAM9085F Polyether imide

Thermal resistance

Excellent FST rate

Dimensional stability at high temps

Carbon Footprint

60% lower wrt. to PAN CF reinforced PA

Tensile Strength

Test Method: ASTM D638 Value: **171 MPa** Water Absorption Test Method: ISO 69 Value: <**0.05%**

Flame Retardand

Test Method: UL94 Value: **V0**

Super polymers and composites

Roboze Materials

PEKK Polyetherketoneketone

Low crystallization rate

Excellent printability

Good interlayer adhesion

Flame Retardand

Test Method: UL94 Value: **V0**

PEEK Polyether ether ketone

Self lubricating

High thermal resistance

Extreme chemical resistance

Continuous Use Temp.

Test Method: ASTM D3045 Value: 250°C

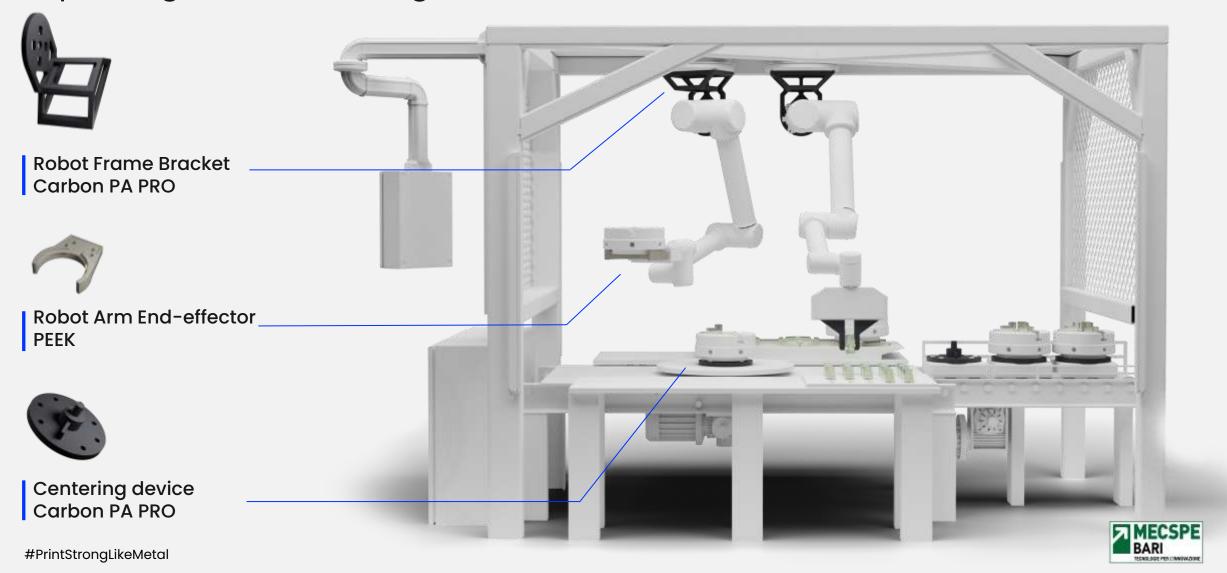
Carbon PEEK PEEK + Carbon Fibers

High compression strength

High mechanical properties

Ideal for metal replacement in harsh environments

HDT (load 1.82MPa)


Test Method: ASTM D648 Value: **250°C**

Industrialization of the production process

Improving manufacturing

Low Earth orbit applications

Developing the Space Industry

Telescope Holder Carbon PEEK

4U Cubesat

MFD&Circuitry Holder PEEK

Roboze Solution

- From Aluminium to Carbon PEEK
- Weight saving (-49%)
- Outgassing material for use in space
- Dimensional stability in the range of -40°C ÷ +80°C

- From CNC machining to PEEK 3D printing
- Several design iterations
- Cost savings (-88%)
- Design freedom for parts count reduction (-20%)

Space Medicine OPerationS (SMOPS)

Getting ready for the future

3D printing parts for space exploration

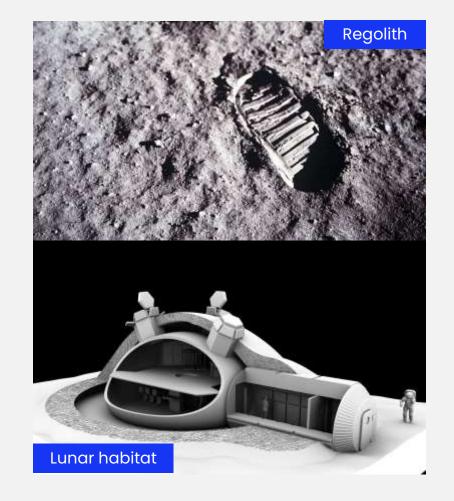
- Analogue mission that will take place at the MDRS (Mars Desert Research Station), a research facility in Utah, USA
- For two weeks in isolation, analogue astronauts will test different technologies and operational scenarios in the field of **space medicine**, in preparation for future human missions to Mars
- 3D printing is seen as a fundamental part of future space exploration and extra-terrestrial missions
- A **Roboze** printer will be taken on the mission for printing of objects for emergencies, scientific research, and everyday use

Advantages

- Custom designs
- Printing of spare parts
- Digital warehouse

Roboze

In-situ resource utilization (ISRU) for the Moon and Mars What's next



Mixing regolith and plastic for 3D printing

- Regolith (dust, broken rocks, and other related materials found on the surface of planets and moons) can be mixed with plastic to produce filament for FFF printing
- Filaments with different properties can be made and used to print various objects needed for extra-terrestrial settlements
- Bricks with custom geometries are a prime candidate for printing, enabling the construction of large structures such as habitats

Advantages

- ISRU reduces the need for supplies from Earth
- The design freedom in 3D printing allows objects to be manufactured for specific applications
- Recycling of old parts helps to close the loop and reduce the need for new resources

Via Vincenzo Aulisio 31/33 70124 Bari-Italy roboze.com

<u>(+39) 080 505 7559</u>

HOUSTON, TX, US HEADQUARTERS US

Roboze Inc

7934 Breen Drive 77064 Houston, TX, Stati Uniti

<u>(+1) 346 229 5675</u>

