

SOLAR COOLING: Quali opportunità per imprese e professionisti?

Bari, 16 Maggio 2019

Uni. Versus CSEI – Sala Convegni

Perito Termotecnico Luciano Poletti **Technical Sales Support, Comex Group S.r.L.**

Recupero termico da gruppi elettrogeni e da processi industriali

Produzione di acqua calda utilizzabile:

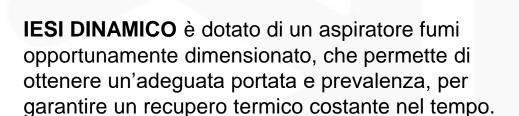
- Nelle macchine frigorifere ad assorbimento funzionanti anche in modalità "pompa di calore"
- Nei processi di lavorazione industriale

Raffreddamento e Riscaldamento

IESI

Il recuperatore termico da gruppi elettrogeni e da processi industriali

IESI: un monoblocco modulare che recupera energia termica derivata da fluidi di raffreddamento, aria surriscaldata o gas combusti che vengono espulsi in atmosfera libera per mezzo di camini o canali da fumo.



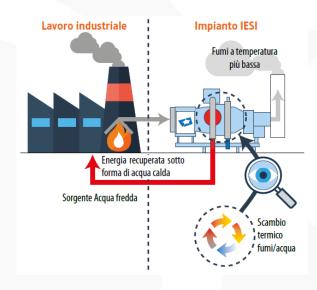
IESI

Modelli:

IESI STATICO funziona grazie alla pressione e portata dei fumi indotti dalla sorgente.

IESI CM è la versione appositamente costruita per il recupero termico globale dei motori endotermici.

IESI PK è appositamente pensato per poter funzionare direttamente a cielo aperto.



IESI

Applicazioni:

- Forni fusori,
- Forni di riscaldo,
- Forni per trattamento termico,
- Forni per produzione alimentare,
- Vetrerie,
- Gruppi elettrogeni a motore endotermico e Turbogas ecc..
- Motori endotermici (IESI versione "CM"),
- Fumi dalla combustione di: GAS, GASOLIO, SINGAS, ecc.
- Altre situazioni, che normalmente vedono l'espulsione in atmosfera di fumi caldi, ossia energia termica sprecata.

Perché IESI?

✓ Soluzione compatta: in 450 mm di lunghezza abbatte la temperatura dei fumi da 980 a 85 °C.

- ✓ Rendimenti elevati: il materiale in AISI 316 L permette il recupero termico sfruttando anche il calore latente ottenendo quindi maggiori Titoli di Efficienza Energetica.
- ✓ Una più facile manutenzione

Pulizia in 3 semplici mosse

1 SPEGNI IESI E RIMUOVI I PANNELLI DI ISPEZIONE

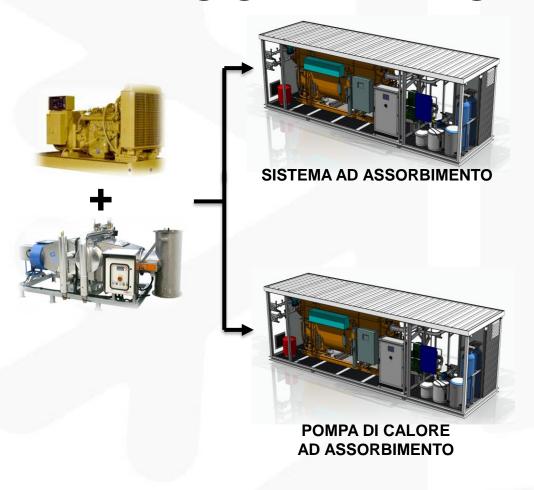
2 PULISCI GLI SCAMBIATORI CON UNA SEMPLICE IDROPULITRICE

3 RIMETTI I PANNELLI DI ISPEZIONE E AVVIA IESI

Recupero termico da gruppi elettrogeni

GRUPPO ELETTROGENO

IESI CM
RECUPERATORE DI CALORE
ACQUA-ACQUA
FUMI-ACQUA


SISTEMA AD ASSORBIMENTO IN POMPA DI CALORE

L'applicazione dello **IESI CM** permette al gruppo elettrogeno di diventare un **cogeneratore** ad alto rendimento "**CAR**"

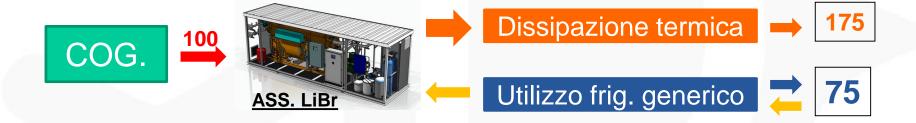
Recupero termico da gruppi elettrogeni SISTEMA TRIGENERATIVO

Consente l'utilizzo del cogeneratore anche in estate

Ritorno dell'investimento economico in minor tempo

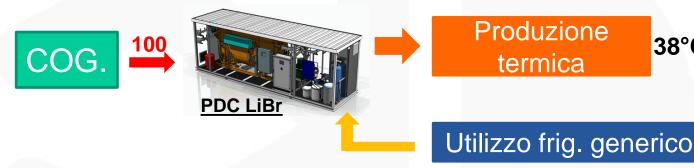
Consente l'utilizzo del cogeneratore anche in estate

Consente l'utilizzo del cogeneratore in inverno con un maggior rendimento rispetto all'utilizzo diretto del calore


Ritorno dell'investimento economico in minor tempo

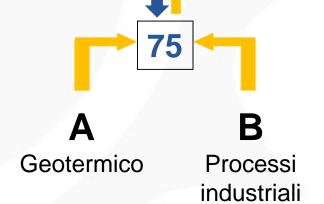
Formulazione standard della trigenerazione

Produzione di energia frigorifera generica mediante ASSORBITORE LiBr



Formulazione della trigenerazione mediante PDC LiBr

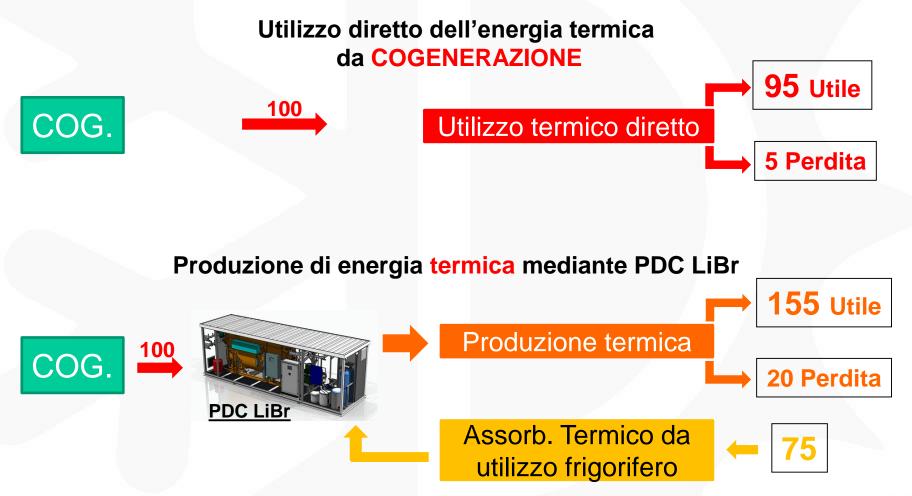
38°C


155 Utile

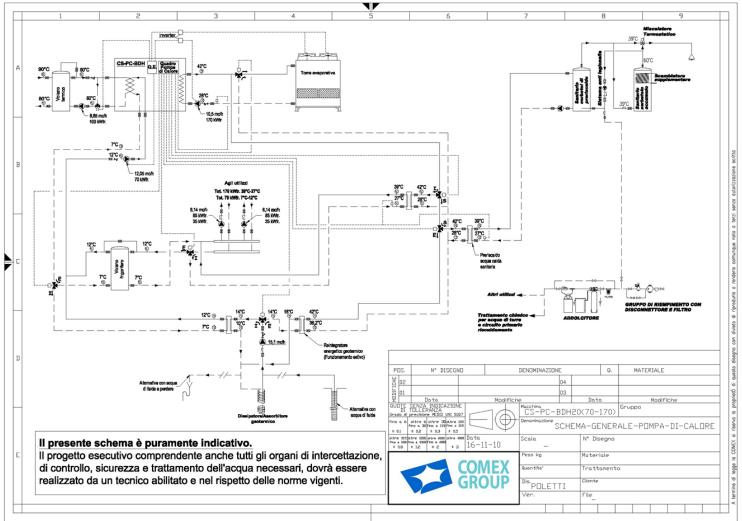
20 Perdita

Efficienze del sistema:

$$A = \frac{155}{100} * 100 = \underline{155\%}$$


$$\mathsf{B} = \frac{75 + 155}{100} * 100 = \underline{230\%}$$

Confronto tra l'utilizzo diretto dell'energia termica da cogenerazione e produzione di energia termica mediante PDC LiBr



P&I Pompa di Calore ad assorbimento

Efficientamento energetico di gruppi elettrogeni CASE HISTORY

Villaggio turistico isola di Hurawalhi, Maldive

Recupero termico da gruppi elettrogeni da 1.100 kWel con **IESI PK 1394 ISCM** che alimenta una P.D.C. LiBr da

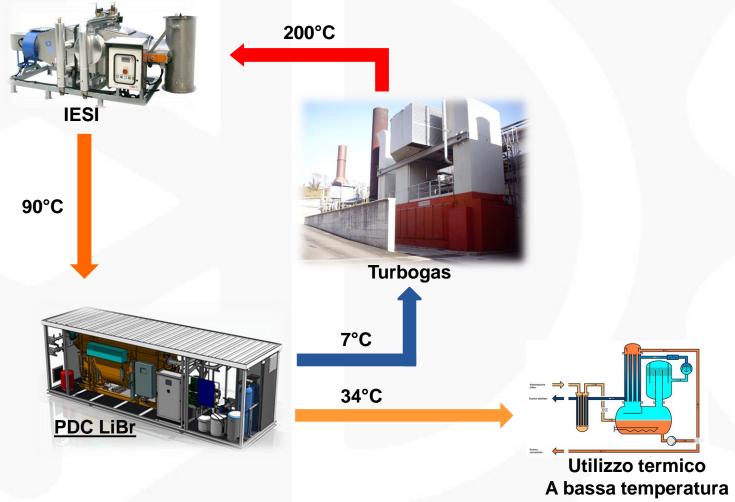
720 kWfr – 1548 kWtr

(fonte Comex Group S.r.L.)

35

Efficientamento energetico di turbogas con applicazione di P.D.C. ad assorbimento

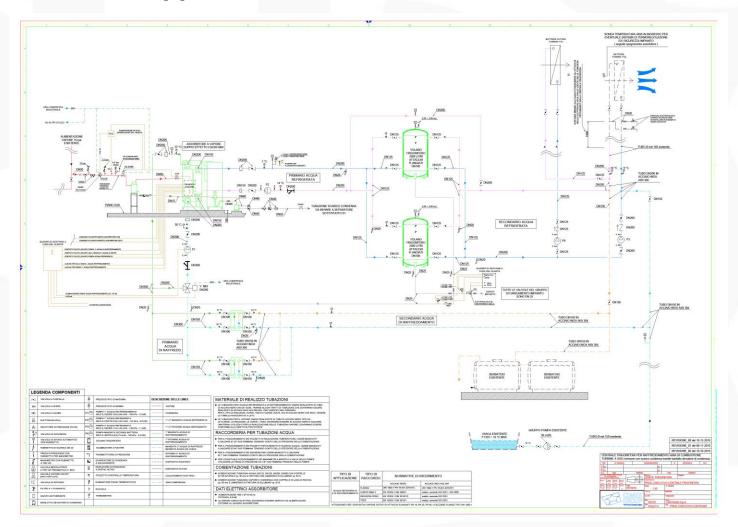
Turbogas da 7 MWel.



3

Trigenerazione e recuperi termici da processi industriali: Tecnologie disponibili e casi studio abbinati alle macchine ad assorbimento

Efficientamento energetico di turbogas con applicazione di P.D.C. ad assorbimento



Efficientamento energetico di turbogas con applicazione di P.D.C. ad assorbimento

Efficientamento energetico di turbogas con applicazione di P.D.C. ad assorbimento

Dati di progetto:

- ✓ Aria comburente = 98.000 kg/h
- ✓ Temperatura aria ingresso batteria = 36°C al 37% Ur
- ✓ Temperatura aria uscita batteria = 12°C al 92% Ur
- ✓ Potenza elettrica di produzione Turbogas = 7 MW (a temp. 15°C)
- ✓ Potenza elettrica di produzione Turbogas = 6,05 MW (a temp. 36°C)
- ✓ Potenza Frigorifera nominale = 1.163 kWfr
- ✓ Potenza Termica alimentazione PDC = 970 kWtr
- ✓ Costo combustibile CH₄ = 0,35 €./smc
- ✓ Costo di acquisto energia elettrica = 0,12 €/kWh
- ✓ Prezzo di vendita energia elettrica ceduta = 0,06 €/kWh
- ✓ Ore annue di funzionamento = 8.000

Risultati ottenuti:

- ✓ Potenza elettrica di produzione Turbogas = **7,55 MW** (a temp. 12°C)
- ✓ Δ Produzione potenza elettrica da 36°C a 12°C = **1,5 MW**
- ✓ Potenza Termica media prodotta dalla PDC = 994 kWtr (Recupero termico)
- ✓ Risparmio combustibile da recupero termico = 841.000 smc/anno → 294.350 €/anno circa
- ✓ Ottenimento dei certificati bianchi valutati con il metodo a consuntivo

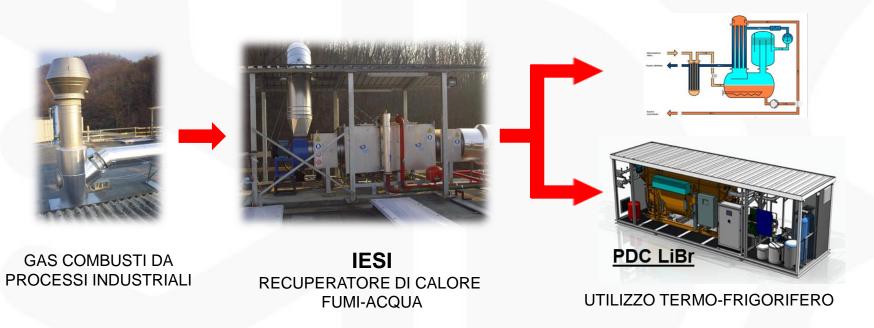
Efficientamento energetico di turbogas con applicazione di P.D.C. ad assorbimento

CASE HISTORY

34

Trigenerazione e recuperi termici da processi industriali: Tecnologie disponibili e casi studio abbinati alle macchine ad assorbimento

Cartiere Modesto Cardella S.p.A. – Lucca P.D.C. LiBr alimentata a vapore da 953 kWfr – 1.640 kWtr (fonte Comex Group S.r.L.)



Cartiera Celupaper S.A. – Buenos Aires, Argentina P.D.C. LiBr alimentata ad acqua calda da 450 kWfr – 968 kWtr (fonte Comex Group S.r.L.)

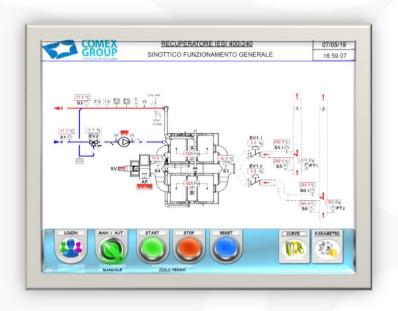
Recupero termico da processi industriali

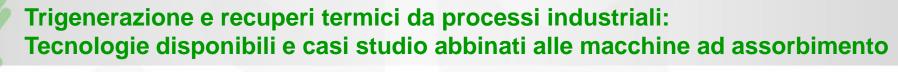
L'applicazione dello **IESI** permette il recupero termico del calore normalmente disperso in atmosfera nei processi industriali

→ AUMENTO DELL'EFFICIENZA PRODUTTIVA

Recupero termico da processi industriali CASE HISTORY

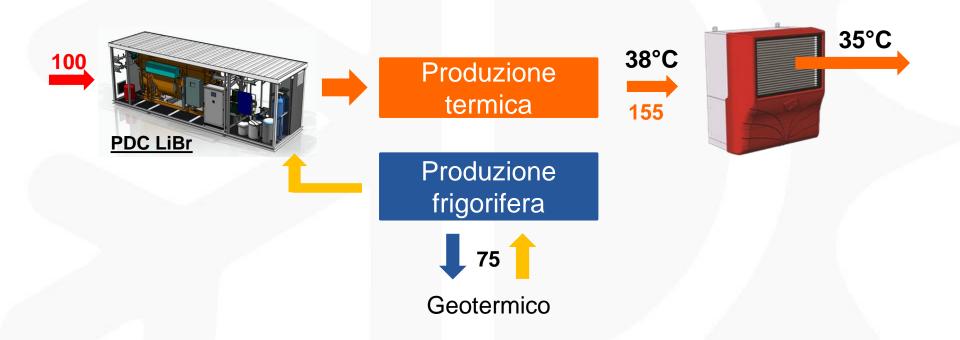
Fonderia OPS - Brescia


IESI 320/260 – Potenza termica = 320 kW Alimentazione di evaporatore sottovuoto di olio emulsionabile (fonte Comex Group S.r.L.)


Fonderia Albertini - Belluno

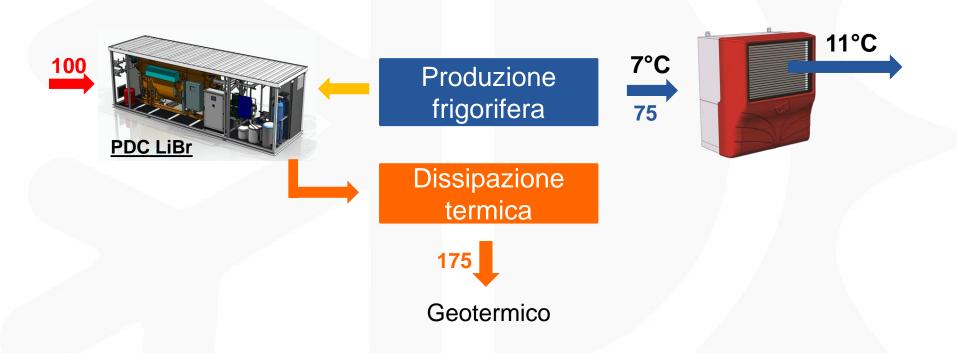
IESI 400/240 – Potenza termica = 400 kW Alimentazione di evaporatore sottovuoto di olio emulsionabile

(fonte Comex Group S.r.L.)



PDC LiBr abbinata ad unità termoventilanti a bassa temperatura SMART LEADER

(Funzionamento invernale)



PDC LiBr abbinata ad unità termoventilanti a bassa temperatura SMART LEADER

(Funzionamento estivo)

Termoventilanti a bassa temperatura **SMART LEADER**

- ✓ Dimensionate per soddisfare i criteri di ammissibilità del conto termico DM 16 Febbraio 2016 All.1
- ✓ Abbinabili a caldaie murali a condensazione a bassa portata, ottenendo un altissimo rendimento
- √ Abbinabile a sistemi tipo HEAT PUMP
- ✓ Ottimizzazione dei rendimenti grazie al funzionamento con alimentazione del fluido vettore = 38°C min.
- ✓ Grado di protezione elettrica IP54
- ✓ Dotate di filtro aria di serie
- ✓ Ventilatore centrifugo a portata variabile
- ✓ Alette orizzontali regolabili
- ✓ Gamma di 6 modelli

SMART LEADER

Dati Tecnici alle condizioni standard

MODELLO CHARTITADER			30	35	40	45	45 35 C - 50 H		35 C - 55 HP	
MODELLO SMART LEADER			RISC.	RISC.	RISC.	RISC.	RAFF.	RISC.	RAFF.	RISC.
POTENZA TERMICA e/o FRIGORIFERA		kW	33,3	38,7	42,8	46	35,4	48,6	35,4	54,6
POIENZA IERMICA E/ O FRIGORIFERA	SENSIB.	kW	-	-	-	-	24,7	-	24,7	-
TEMPERATURA ACQUA DI ALIMENTAZIONE		°C	50	50	50	50	7	50	7	54
TEMPERATURA ACQUA DI ALIMENTAZIONE	OUT	°C	25	30	35	40	12	45	12	49
PORTATA ARIA DI VENTILAZIONE MAX	OUT	m3/h	5.139	5.195	5.237	5.268	4.553	5.295	4.553	5.356
PORTATA ARIA DI VENTILAZIONE MAX		UR%	50	50	50	50	50	50	50	50
TEMP. ARIA IN MANDATA		°C	36,4	39,8	42,3	44,2	10,6	45,8	10,6	49,5
UMIDITA' RELATIVA ARIA USCITA		UR%	-	-	-	-	96,6	-	96,6	-
PRESSIONE RESIDUA ARIA DI VENTILAZIONE		Pa	31	31	31	31	10	31	10	31
PORTATA H2O DI ALIMENTAZIONE		Litri/h	1.150	1.680	2.480	4.000	6.070	8.460	6.070	9.520
PERDITA DI CARICO LATO H2O		kPa	5	9	16	34	85	125	85	152
	н	mm	1.371	1.371	1.371	1.371	1.371		1.371	
DIMENSIONI D'INGOMBRO	L	mm	1.200	1.200	1.200	1.200	1.200		1.200	
	P	mm	814	814	814	814	814		814	
PESO		kg	150	160	160	150	150		150	
NUMERO VENTILATORI		n°	1	1	1	1	1		1	
ALIMENTAZIONE ELETTRICA		V/Hz	230/50	230/50	230/50	230/50	/50 230/5		230/50	
POTENZA ELETTRICA		w	1.200	1.200	1.200	1.200	1.200		1.200	
ASSORBIMENTO MAX.		Α	6	6	6	6	6		6	
CLASSE DI ISOLAMENTO			F	F	F	F	F		F	
GRADO DI PROTEZIONE		IP	54	54	54	54	54		54	
ATTACCHI IDRAULICI		М	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4		1" 1/4	
CONTENUTO FLUIDO VETTORE		LT.	15	15	15	15	15		15	
PRESS. MAX. ESERCIZIO		bar	16	16	16	16	16		16	
	Max Vel.		74	74	74	74	74		74	
PRESSIONE SONORA (a 10 mt)	Med Vel.		73	73	73	73	73		73	
	Min Vel.		72	72	72	72	72		72	
Δt°C H2O DI LAVORO MAX VELOCITA'			25	20	15	10	5	5	5	5
t°C AMBIENTE INVERNO			16	16	16	16	16	-	16	
t°C AMBIENTE ESTATE			-	-	-	-	-	26	-	26

H

Trigenerazione e recuperi termici da processi industriali: Tecnologie disponibili e casi studio abbinati alle macchine ad assorbimento

SMART LEADER

per HEAT PUMP in riscaldamento

MOD	ODELLO							C - 55 HP	RAFFRESCAMENTO RISCALDAMENTO HEAT PUMP				
Δt°C H2O DI LAVORO MAX VELOCITA′								5					
t°C AMBIENTE INVERNO							16						
t°C AMBIENTE ESTATE							26						
ACQUA (RATURA CALDA DI TAZIONE		ORTATA DI RELATIVA TERM. e/o FRIG. INGRESSO		TEMP. ARIA IN MANDATA	UMIDITA' RELATIVA ARIA IN USCITA	PRESSIONE RESIDUA ARIA DI VENTILAZ.	PORTATA H2O DI ALIMENTAZIONE	PERDITA DI CARICO LATO H2O				
IN	OUT	O	UT		тот.	SENSIB.							
0	С	m3	/h	UR%	kW	kW	°C	UR%	Pa	Litri/h	kPa		
	33,00	Max.	5.111	50	30,5	-	34,7	-	31	5.280	57		
38	33,49	Med.	4.479	50	27,4	-	35,2	-	20	5.280	57		
	34,12	Min.	3.741	50	23,6	-	35,9	-	100	5.280	57		
	35,00	Max.	5.142	50	33,5	-	36,6	-	31	5.810	67		
40	35,50	Med.	4.507	50	30,1	-	37,1	-	20	5.810	67		
	36,13	Min.	3.764	50	25,9	-	37,8	-	100	5.810	67		
	37,00	Max.	5.172	50	36,5	-	38,4	-	31	6.340	78		
42	37,51	Med.	4.534	50	32,8	-	39,0	-	20	6.340	78		
	38,14	Min.	3.787	50	28,1	-	39,7	-	100	6.340	78		
	39,00	Max.	5.204	50	39,4	-	40,3	-	31	6.870	88		
44	39,51	Med.	4.562	50	35,5	-	40,9	-	20	6.870	88		
	40,15	Min.	3.810	50	30,4	-	41,6	-	100	6.870	88		
	41,00	Max.	5.233	50	42,6	-	42,1	-	31	7.400	100		
46	41,51	Med.	4.582	50	38,1	-	42,3	-	20	7.400	100		
	42,16	Min.	3.833	50	32,7	-	43,5	-	100	7.400	100		

4

Trigenerazione e recuperi termici da processi industriali: Tecnologie disponibili e casi studio abbinati alle macchine ad assorbimento

SMART LEADER

per HEAT PUMP in raffrescamento

MODELLO	35 C - 55 HP RAFFRESCAMENTO RISCALDAMENTO HEAT PUMP
Δt°C H2O DI LAVORO MAX VELOCITA′	5
t°C AMBIENTE INVERNO	16
t°C AMBIENTE ESTATE	26

TEMPERATURA ACQUA CALDA DI ALIMENTAZIONE		PORTATA DI VENTILAZIONE		UMIDITA' RELATIVA ARIA INGRESSO	POTENZA TERM. e/o FRIG.		TEMP. ARIA IN MANDATA	UMIDITA' RELATIVA ARIA IN USCITA	PRESSIONE RESIDUA ARIA DI VENTILAZ.	PORTATA H2O DI ALIMENTAZIONE	PERDITA DI CARICO LATO H2O
IN	OUT	0	UT		тот.	SENSIB.					
0	°C m3/h		3/h	UR%	kW	kW	°C	UR%	Pa	Litri/h	kPa
	12,00	Max.	4.553	50	35,4	24,7	10,6	96,6	10	6.070	85
7	11,58	Med.	3.977	50	32,5	22,3	10,1	97,1	7	6.070	85
	11,04	Min.	3.306	50	28,6	19,4	9,4	97,6	90	6.070	85
	14,00	Max.	4.583	50	28,2	21,5	12,5	96,8	10	4.840	56
9	13,63	Med.	4.003	50	26,1	19,5	12,0	97,3	7	4.840	56
	13,13	Min.	3.329	50	23,3	17,0	11,4	97,8	90	4.840	56

C = raffrescamento HP = riscaldamento Heat Pump

SMART LEADER abbinata a PDC LiBr CASE HISTORY

NET GLOBAL S.r.L. – Wifi4all

SMART LEADER alimentate da Pompa di calore geotermica ad assorbimento da 120 kWtr. e 70 kWfr.

Riscaldamento e raffrescamento di unità lavorativa ed uffici (fonte Comex Group S.r.L.)

SMART LEADER abbinata a PDC LiBr

SMART LEADER alimentate da Pompa di calore geotermica ad assorbimento da 120 kWtr. e 70 kWfr.

Riscaldamento e raffrescamento di unità produttiva (fonte Comex Group S.r.L.)

SMART LEADER abbinata a caldaia Climair Condensing CASE HISTORY

PROSERVICE - Padova

Sistemi splittati:

SMART LEADER + Climair Condensing

da 33 kWtr. cad. (alimentate a 50 °C con dt 25 °C) Riscaldamento di unità produttiva (fonte Comex Group S.r.L.)

SMART LEADER

IMPIANTI SPECIALI

Impianto di trigenerazione in PDC alimentato da Turbina a gas con PREMIX VEN

GRAZIE PER L'ATTENZIONE

Il presente documento è il risultato di una libera e personale interpretazione dell'autore
In nessun caso le idee espresse dall'autore possono essere considerate come parere di AiCARR.
Le fonti esterne (di immagini, materiali, schemi, idee, ecc.)sono state opportunamente citate, dove note.
Immagini e disegni sono tratti nella maggior parte dei casi da Internet e si ricollegano a concetti e definizioni
di senso comune. Nel caso che qualche diritto di autore sia stato leso (per involontario dolo) si prega di
contattare l'autore della presentazione, al fine di risolvere ogni possibile conflitto.

