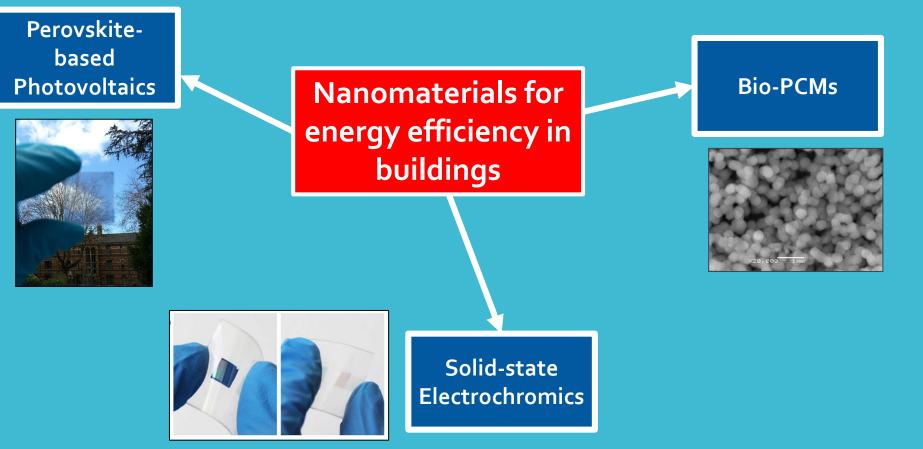
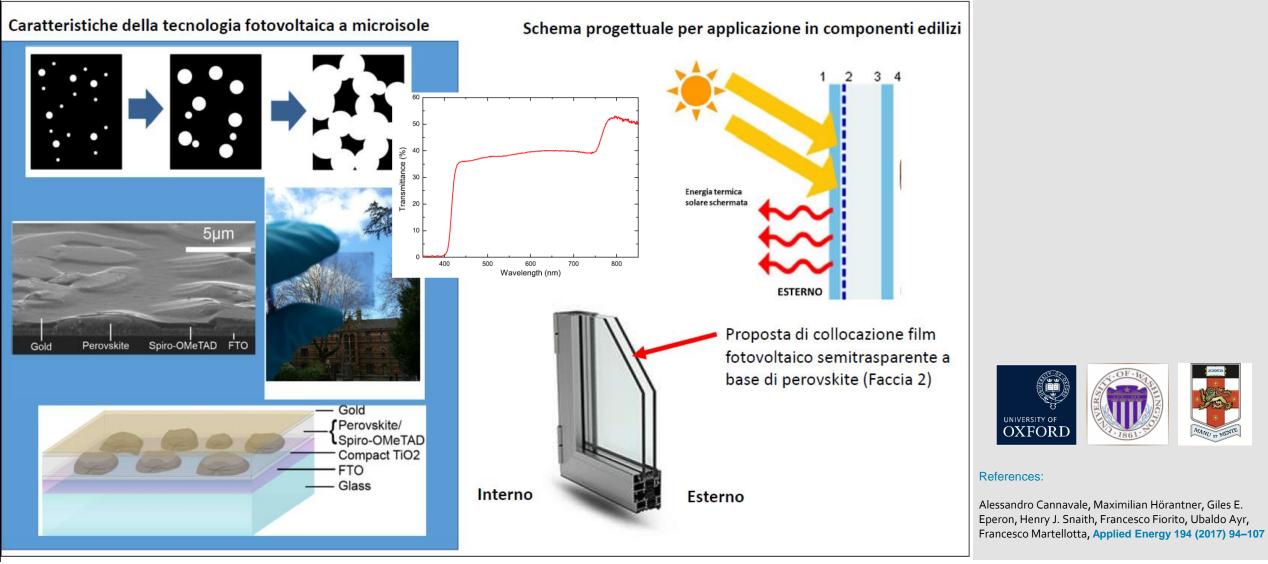


Nanomaterials for energy efficiency in buildings

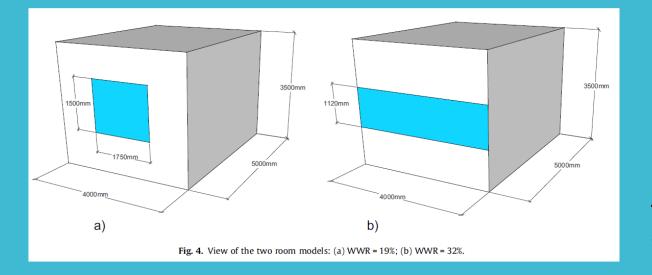
Ing. Alessandro Cannavale, PhD Technical University of Bari





Overview

Perovskite-based BIPVs
 Solid-state ECs
 Nano Biocompatible-PCMs



Conversion efficiency: 6.1% Adv. Mater. Interfaces 2016, 1500837 UNIVERSITY OF

OXFORD

Useful Daylight Illuminance (UDI): 100–2000 lx

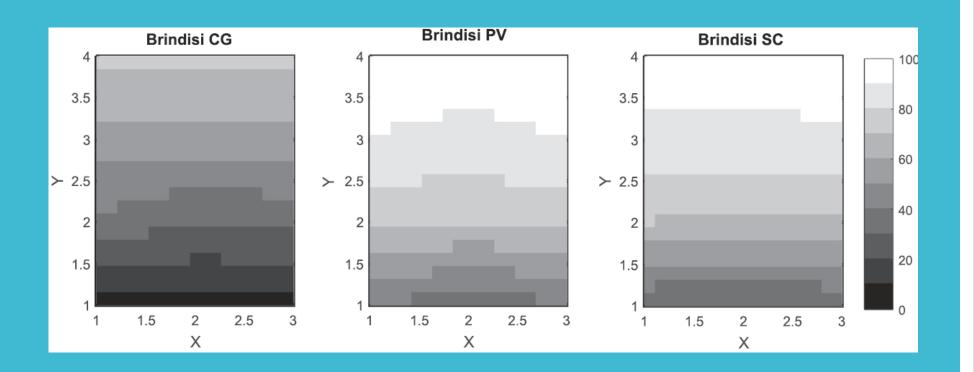
$$\mathsf{DGP} = 5.87 \times 10^{-5} E_V + 9.18 \times 10^{-2} \mathsf{log} \left(1 + \sum_i \frac{L_{s,i}^2 \omega_{s,i}}{E_V^{1.87} P_i^2} \right) + 0.16$$

Softwares adopted:

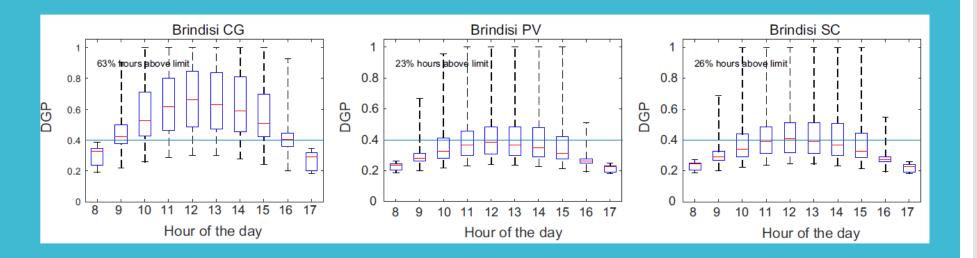
- EnergyPlus
- Daysim

Two values of WWR: 19% - Residential room 32% - Offices

Three locations:


- London
- Aswan
- Brindisi

References:


Useful Daylight Illuminance (UDI): 100–2000 lx

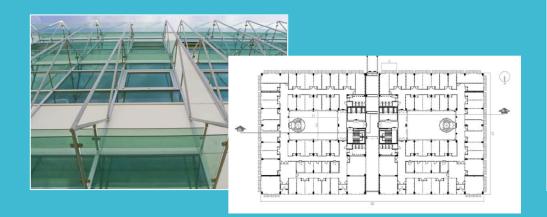
References:

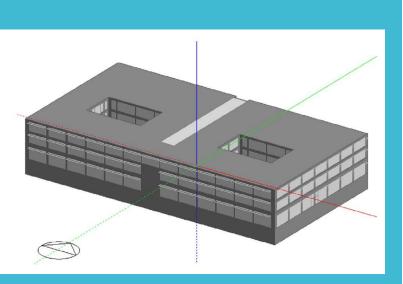
Daylight Glare Probability (DGP)

References:

Use of electric lighting for offices having strip windows with a WWR = 32%. Load is meant as the annual electric lighting energy load in the test room; Yield is the Annual Electric energy yield (including temperature effect).

Location	Type of glazing	LOAD [kWh/yr]	YIELD [kWh/yr]	Yield/Load [%]
Brindisi	CG	78	_	-
	SC	108	-	-
	PV	118	129.0	109.3
London	CG	136	-	-
	SC	198	-	-
	PV	200	82.40	41.2
Aswan	CG	52	-	-
	CG	68	-	-
	PV	68	143.40	210.9


Energy Yield



References:

BIPV solutions were investigated with reference to a tertiary building case-study.
Energy yield of building integrated perovskite PVs showed figures up to 42.3 MWh/yr.
Visual comfort assessment was carried out using two relevant metrics: UDI and DGP.

References:

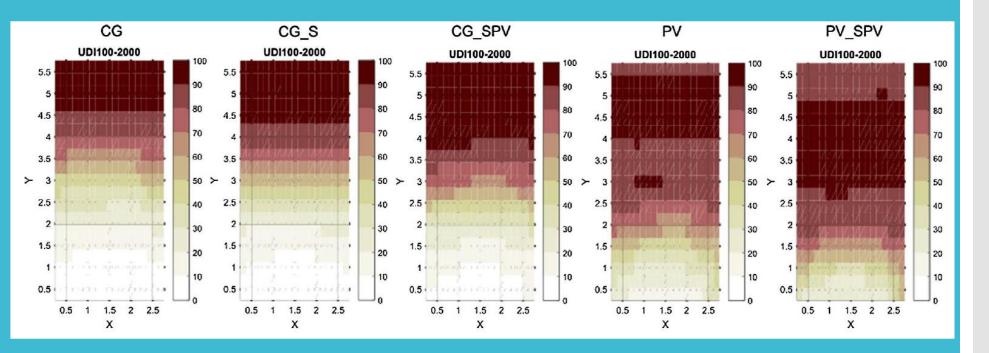
	Electricity consumption [MWh/year]						
	CG	CG_S	CG_SPV	PV	PV_SPV		
Heating electricity consumption	38.3	39.0	40.0	49.1	51.1		
Cooling electricity consumption	170.1	166.6	160.0	133.3	122.4		
HVAC electricity consumption	208.4	205.6	200.0	182.4	173.5		
Lighting electricity consumption	42.0	42.9	44.3	58.5	63.3		
Overall variable electricity consumption	250.4	248.5	244.3	240.5	237.2		
Variation		-0.8%	-2.5%	-4.0%	-5.3%		

The use of a semitransparent PV layer within windows caused a 4% reduction in overall consumptions, passively.

References:

Comparison of annual electricity yield [MWh/year] due to PV panels integrated in glazing and shading systems.

	PV glass			PV glass, w/Horiz. shades			Horiz. shades		
	East	South	West	East	South	West	East	South	West
Ground floor 1st and 2nd floor Overall Grand total [MWh/year]	2.51 1.65 5.81	7.13 4.35 15.82	2.68 1.77 6.22 27.9	1.75 0.96 3.68	4.44 2.12 8.69	1.86 1.03 3.92 16.3	1.65 1.65 4.95	5.62 5.19 15.99	1.59 1.59 4.77 25.7


The use of PV film over the entire glazed surface of East, South, and West facades (an area of about 1100 m2) returned in total 27.9 MWh/year of electricity. This corresponds to 48% of the lighting energy demand, to 16% of the HVAC electricity demand, or to 12% of the overall electricity demand (18% considering also opaque PV shades).

References:


Useful Daylight Illuminance (UDI): 100–2000 lx

References:

UNIVERSITY OF

References:

Ŧ

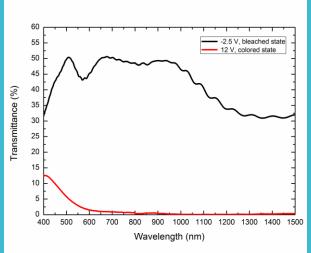
16

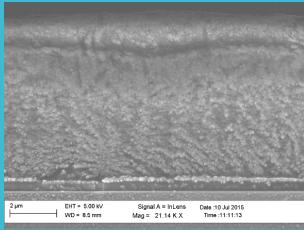
Ē

17

Alessandro Cannavale, Laura Ierardi, Maximilian Hörantner, Giles E. Eperon, Henry J. Snaith, Ubaldo Ayr, Francesco Martellotta, Applied Energy 205 (2017) 834-846

Daylight Glare Probability (DGP)





- a - r - t - i -Agenzia regionale per la tecnologia e l'innovazione

Materials	Thickness	Fabrication process
PEN ITO	0.125 mm 150 nm	Commercial
WO ₃	300 nm	Physical vacuum deposition: Electron-beam
Nafion- H^+	8 µm	Solution processing:

References:

Alessandro Cannavale, Francesco Martellotta, Pierluigi Cossari, Giuseppe Gigli and Ubaldo Ayr, under revision, Applied Energy

- **a - r - t - i -**Agenzia regionale per la tecnologia e l'innovazione

Solid-state ECs

Clear Glass					Selective Glass				CNR Electrochromic				
	L	Н	С	Ο	L	Н	С	Ο	L	Н	С	0	
LON	9.2	5.4	8.6	23.2	11.9	6.0	54	23.3	13.2	5.9	3.3	22.4	
Lon	2.2	0.1	0.0	23.2	11.2	0.0	2.1	20.0	(10.8)	(5.4)	5.5	(19.6)	
ROM	7.4	1.4	20.3	29.1	8.2	1.4	17.4	27.0	9.8	1.8	12.6	24.2	
ROM	7.4	1.4	20.5	27.1	0.2	1.4	17.4	27.0	(7.8)	(1.4)	12.0	(21.7)	
ASW	8.2	0.0	46.7	54.9	8.4	0.0	41.1	49.6	9.2	0.0	33.1	42.3	
	0.2	0.0	40.7 54.9	0.0 40.7 5	54.9 0.4	0.4	0.0	41.1	41.1 49.0	(8.4)	0.0	55.1	(41.5)
	•	·	•	•	·				·	•	•		

The total energy savings achievable with the latter solution reached 25%, compared to the clear glass reference configuration and 19% compared to selective glass reference.

References:

Alessandro Cannavale, Francesco Martellotta, Pierluigi Cossari, Giuseppe Gigli and Ubaldo Ayr, under revision, Applied Energy

Solid-state ECs

	UDI<300	UDI ₃₀₀₋₃₀₀₀	UDI>3000	Glare Index < 22
CG	10.7	42.4	46.8	56.5
SG	14.9	63.9	21.2	83.5
SC	18.3	79.1	2.6	95.9
EC@500 lx	13.7	71.6	14.8	88.0
EC@300 lx	16.0	69.2	14.8	87.3
CNR-EC @ 500lx	19.4	80.4	0.1	99.9
CNR-EC @ 300lx	21.2	78.6	0.1	99.3
CNR-EC (roll. shut.) @ 500 lx	13.8	63.1	23.1	79.3
CNR-EC (roll. Shut.) @ 300 lx	15.7	63.8	20.5	81.2
CNR-EC (roll. shut. Extended)	16.8	75.4	7.8	93.6

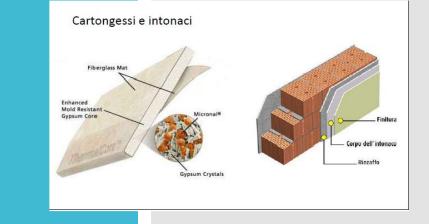
Visual comfort assessment in terms of Useful Daylight Illuminance and Glare Index for the different technologies with reference to Rome

References:

Alessandro Cannavale, Francesco Martellotta, Pierluigi Cossari, Giuseppe Gigli and Ubaldo Ayr, under revision, Applied Energy

• **a** • **r** • **t** • **i** • Agenzia regionale per la tecnologia e l'innovazione

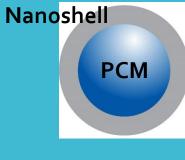
Biocompatible-PCMs


Core-shell nanostructures by solgel (Stober method)

Sol-gel method is suitable for NanoPCM with alkane, fatty acids and indium as core material and silicon dioxide as shell material.

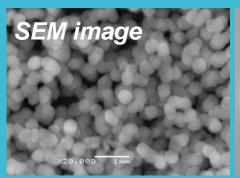
Decanoic Acid (Capric Acid) Molecular weight: 172,2646 g/mol Molecular Formula: CH₃(CH₂)₈COOH Name: n-Decanoic acid – Nome comune: Acido caprico Melting temperature: 27-32° C (Source: Sigma-Aldrich)

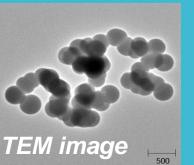
Polyethylene Glycol (PEG600)

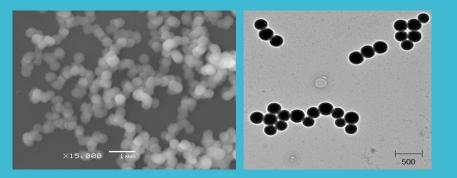

Molecular Weight: **570-630 g / mol** Molecular Formula: **H(OCH_2CH_2)_OH** Name: **Polyethylene Glycol (PEG600)** Melting temperature: **17-22° C (Source: Sigma-Aldrich)**

References:

A. Cannavale, V. De Matteis, F. Martellotta, U. Ayr, Manuscript in preparation


SiO₂@PolyethyleneGlycol600


SiO₂@Decanoic Acid



Biocompatible-PCMs

SiO₂@Decanoic Acid – 320 nm

SiO₂@PolyethyleneGlycol600 – 320 nm

References:

A. Cannavale, V. De Matteis, F. Martellotta, U. Ayr, Manuscript in preparation

Biocompatible-PCMs

Toxicity assessment on lung epithelial cell lines (A549):

-These cells are an in vitro model to mimick inhalation exposure. Viability assay was used to assess viability of cells after incubation with two high concentrations of our NanoPCMs (10µg/ml, 40 µg/ml) at typical timepoints for acute and chronic toxicity.

No significant variation of viability (<95%) was observed in both cases.

(Data reported as mean ±SD from three independent experiments).

References:

A. Cannavale, V. De Matteis, F. Martellotta, U. Ayr, Manuscript in preparation

Biocompatible-PCMs

Material	Melting Temperature (°C)	Enthalpy of fusion (J/g)		
Commercial PCM	25-26	70.22 (242)		
SiO2@Decanoic_acid	27-32	71.40 (156)		
SiO2@PEG_6oo	17-22	48.02 (108)		

References:

A. Cannavale, V. De Matteis, F. Martellotta, U. Ayr, Manuscript in preparation

-

Thank you for your kind attention!